
www.dbooks.org

https://www.dbooks.org/

PHP: The “Right” Way
Your guide to PHP best practices, coding standards, and authoritative
tutorials.

Phil Sturgeon and Josh Lockhart

This book is for sale at http://leanpub.com/phptherightway

This version was published on 2016-11-14

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License

http://leanpub.com/phptherightway
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Tweet This Book!
Please help Phil Sturgeon and Josh Lockhart by spreading the word about this book on Twitter!

The suggested hashtag for this book is #phptherightway.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#phptherightway

www.dbooks.org

http://twitter.com
https://twitter.com/search?q=%23phptherightway
https://twitter.com/search?q=%23phptherightway
https://www.dbooks.org/

This book is built entirely from the hard work put in from the PHP community via GitHub. There are too
many to name, but you know who you are. Without all the pull requests and suggestions from you folks,
people would still be durp-clicking around outdated tutorials with PHP 4 code examples like it’s 2003.

Contents

1. Getting Started . 1
1.1 Use the Current Stable Version (7.0) . 1
1.2 Built-in web server . 1
1.3 Mac Setup . 1
1.4 Windows Setup . 3

2. Code Style Guide . 4

3. Language Highlights . 6
3.1 Programming Paradigms . 6
3.2 Namespaces . 7
3.3 Standard PHP Library . 8
3.4 Command Line Interface . 8
3.5 Xdebug . 9

4. Dependency Management . 11
4.1 Composer and Packagist . 11
4.2 PEAR . 14

5. Coding Practices . 16
5.1 The Basics . 16
5.2 Date and Time . 16
5.3 Design Patterns . 17
5.4 Working with UTF-8 . 18

6. Dependency Injection . 22
6.1 Basic Concept . 22
6.2 Complex Problem . 23
6.3 Containers . 24
6.4 Further Reading . 24

7. Databases . 26
7.1 MySQL Extension . 26
7.2 PDO Extension . 27
7.3 Interacting with Databases . 28
7.4 Abstraction Layers . 30

www.dbooks.org

https://www.dbooks.org/

CONTENTS

8. Templating . 32
8.1 Benefits . 32
8.2 Plain PHP Templates . 32
8.3 Compiled Templates . 33
8.4 Further Reading . 35

9. Errors and Exceptions . 37
9.1 Errors . 37
9.2 Exceptions . 40

10. Security . 42
10.1 Web Application Security . 42
10.2 Password Hashing . 42
10.3 Data Filtering . 43
10.4 Configuration Files . 45
10.5 Register Globals . 45
10.6 Error Reporting . 45

11. Testing . 47
11.1 Test Driven Development . 47
11.2 Behavior Driven Development . 49
11.3 Complementary Testing Tools . 49

12. Servers and Deployment . 50
12.1 Platform as a Service (PaaS) . 50
12.2 Virtual or Dedicated Servers . 50
12.3 Shared Servers . 51
12.4 Building and Deploying your Application . 51

13. Virtualization . 55
13.1 Vagrant . 55
13.2 Docker . 56

14. Caching . 58
14.1 Opcode Cache . 58
14.2 Object Caching . 58

15. Documenting your Code . 61
15.1 PHPDoc . 61

16. Resources . 63
16.1 From the Source . 63
16.2 People to Follow . 63
16.3 Mentoring . 63
16.4 PHP PaaS Providers . 63
16.5 Frameworks . 64
16.6 Components . 65

CONTENTS

16.7 Other Useful Resources . 66
16.8 Video Tutorials . 66
16.9 Books . 67

17. Community . 68
17.1 PHP User Groups . 68
17.2 PHP Conferences . 68
17.3 ElePHPants . 69

www.dbooks.org

https://www.dbooks.org/

1. Getting Started

1.1 Use the Current Stable Version (7.0)

If you are getting started with PHP, start with the current stable release of PHP 7.0¹. PHP 7.0 is very new,
and adds many amazing new features over the older 5.x versions. The engine has been largely re-written, and
PHP is now even quicker than older versions.

Most commonly in the near future you will find PHP 5.x being used, and the latest 5.x version is 5.6. This is
not a bad option, but you should try to upgrade to the latest stable quickly - PHP 5.6 will not receive security
updates beyond 2018². Upgrading is really quite easy, as there are not many backwards compatibility breaks³.
If you are not sure which version a function or feature is in, you can check the PHP documentation on the
php.net⁴ website.

1.2 Built-in web server

With PHP 5.4 or newer, you can start learning PHP without installing and configuring a full-fledged web
server. To start the server, run the following command from your terminal in your project’s web root:

1 > php -S localhost:8000

• Learn about the built-in, command line web server⁵

1.3 Mac Setup

OS X comes prepackaged with PHP but it is normally a little behind the latest stable. Mavericks has 5.4.17,
Yosemite 5.5.9, El Capitan 5.5.29 and Sierra 5.6.24, but with PHP 7.0 out that is often not good enough.

There are multiple ways to install PHP on OS X.

Install PHP via Homebrew

Homebrew⁶ is a powerful package manager for OS X, which can help you install PHP and various extensions
easily. Homebrew PHP⁷ is a repository that contains PHP-related “formulae” for Homebrew, and will let you
install PHP.

¹http://php.net/downloads.php
²http://php.net/supported-versions.php
³http://php.net/manual/migration70.incompatible.php
⁴http://php.net/manual/
⁵http://php.net/features.commandline.webserver
⁶http://brew.sh/
⁷https://github.com/Homebrew/homebrew-php#installation

http://php.net/downloads.php
http://php.net/supported-versions.php
http://php.net/supported-versions.php
http://php.net/manual/migration70.incompatible.php
http://php.net/manual/
http://php.net/features.commandline.webserver
http://brew.sh/
https://github.com/Homebrew/homebrew-php#installation
http://php.net/downloads.php
http://php.net/supported-versions.php
http://php.net/manual/migration70.incompatible.php
http://php.net/manual/
http://php.net/features.commandline.webserver
http://brew.sh/
https://github.com/Homebrew/homebrew-php#installation

Getting Started 2

At this point, you can install php53, php54, php55, php56 or php70 using the brew install command, and
switch between them by modifying your PATH variable. Alternatively you can use brew-php-switcher⁸ which
will switch automatically for you.

Install PHP via Macports

The MacPorts⁹ Project is an open-source community initiative to design an easy-to-use system for compiling,
installing, and upgrading either command-line, X11 or Aqua based open-source software on the OS X
operating system.

MacPorts supports pre-compiled binaries, so you don’t need to recompile every dependency from the source
tarball files, it saves your life if you don’t have any package installed on your system.

At this point, you can install php54, php55, php56 or php70 using the port install command, for example:

1 sudo port install php56

2 sudo port install php70

And you can run select command to switch your active PHP:

1 sudo port select --set php php70

Install PHP via phpbrew

phpbrew¹⁰ is a tool for installing andmanagingmultiple PHP versions. This can be really useful if two different
applications/projects require different versions of PHP, and you are not using virtual machines.

Install PHP via Liip’s binary installer

Another popular option is php-osx.liip.ch¹¹ which provides one liner installation methods for versions 5.3
through 7.0. It doesn’t overwrite the PHP binaries installed by Apple, but installs everything in a separate
location (/usr/local/php5).

Compile from Source

Another option that gives you control over the version of PHP you install, is to compile it yourself¹². In
that case be sure to have installed either Xcode¹³ or Apple’s substitute “Command Line Tools for XCode”¹⁴
downloadable from Apple’s Mac Developer Center.

⁸https://github.com/philcook/brew-php-switcher
⁹https://www.macports.org/install.php
¹⁰https://github.com/phpbrew/phpbrew
¹¹http://php-osx.liip.ch/
¹²http://php.net/install.macosx.compile
¹³https://github.com/kennethreitz/osx-gcc-installer
¹⁴https://developer.apple.com/downloads

www.dbooks.org

https://github.com/philcook/brew-php-switcher
https://www.macports.org/install.php
https://github.com/phpbrew/phpbrew
http://php-osx.liip.ch/
http://php.net/install.macosx.compile
https://github.com/kennethreitz/osx-gcc-installer
https://developer.apple.com/downloads
https://github.com/philcook/brew-php-switcher
https://www.macports.org/install.php
https://github.com/phpbrew/phpbrew
http://php-osx.liip.ch/
http://php.net/install.macosx.compile
https://github.com/kennethreitz/osx-gcc-installer
https://developer.apple.com/downloads
https://www.dbooks.org/

Getting Started 3

All-in-One Installers

The solutions listed above mainly handle PHP itself, and do not supply things like Apache, Nginx or a SQL
server. “All-in-one” solutions such as MAMP¹⁵ and XAMPP¹⁶ will install these other bits of software for you
and tie them all together, but ease of setup comes with a trade-off of flexibility.

1.4 Windows Setup

You can download the binaries from windows.php.net/download¹⁷. After the extraction of PHP, it is
recommended to set the PATH¹⁸ to the root of your PHP folder (where php.exe is located) so you can execute
PHP from anywhere.

For learning and local development, you can use the built in webserver with PHP 5.4+ so you don’t need
to worry about configuring it. If you would like an “all-in-one” which includes a full-blown webserver and
MySQL too then tools such as theWeb Platform Installer¹⁹, XAMPP²⁰, EasyPHP²¹, OpenServer²² andWAMP²³
will help get a Windows development environment up and running fast. That said, these tools will be a
little different from production so be careful of environment differences if you are working on Windows and
deploying to Linux.

If you need to run your production system on Windows, then IIS7 will give you the most stable and best
performance. You can use phpmanager²⁴ (a GUI plugin for IIS7) to make configuring and managing PHP
simple. IIS7 comes with FastCGI built in and ready to go, you just need to configure PHP as a handler. For
support and additional resources there is a dedicated area on iis.net²⁵ for PHP.

Generally running your application on different environment in development and production can lead to
strange bugs popping up when you go live. If you are developing on Windows and deploying to Linux (or
anything non-Windows) then you should consider using a Virtual Machine²⁶.

Chris Tankersley has a very helpful blog post on what tools he uses to do PHP development using Windows²⁷.

¹⁵http://www.mamp.info/en/downloads/
¹⁶http://www.apachefriends.org/en/xampp.html
¹⁷http://windows.php.net/download/
¹⁸http://www.windows-commandline.com/set-path-command-line/
¹⁹http://www.microsoft.com/web/downloads/platform.aspx
²⁰http://www.apachefriends.org/en/xampp.html
²¹http://www.easyphp.org/
²²http://open-server.ru/
²³http://www.wampserver.com/en/
²⁴http://phpmanager.codeplex.com/
²⁵http://php.iis.net/
²⁶/#virtualization_title
²⁷http://ctankersley.com/2015/07/01/developing-on-windows/

http://www.mamp.info/en/downloads/
http://www.apachefriends.org/en/xampp.html
http://windows.php.net/download/
http://www.windows-commandline.com/set-path-command-line/
http://www.microsoft.com/web/downloads/platform.aspx
http://www.apachefriends.org/en/xampp.html
http://www.easyphp.org/
http://open-server.ru/
http://www.wampserver.com/en/
http://phpmanager.codeplex.com/
http://php.iis.net/
http://ctankersley.com/2015/07/01/developing-on-windows/
http://www.mamp.info/en/downloads/
http://www.apachefriends.org/en/xampp.html
http://windows.php.net/download/
http://www.windows-commandline.com/set-path-command-line/
http://www.microsoft.com/web/downloads/platform.aspx
http://www.apachefriends.org/en/xampp.html
http://www.easyphp.org/
http://open-server.ru/
http://www.wampserver.com/en/
http://phpmanager.codeplex.com/
http://php.iis.net/
http://ctankersley.com/2015/07/01/developing-on-windows/

2. Code Style Guide
The PHP community is large and diverse, composed of innumerable libraries, frameworks, and components.
It is common for PHP developers to choose several of these and combine them into a single project. It is
important that PHP code adhere (as close as possible) to a common code style to make it easy for developers
to mix and match various libraries for their projects.

The Framework Interop Group¹ has proposed and approved a series of style recommendations. Not all of them
related to code-style, but those that do are PSR-0², PSR-1³, PSR-2⁴ and PSR-4⁵. These recommendations are
merely a set of rules that many projects like Drupal, Zend, Symfony, Laravel, CakePHP, phpBB, AWS SDK,
FuelPHP, Lithium, etc are adopting. You can use them for your own projects, or continue to use your own
personal style.

Ideally you should write PHP code that adheres to a known standard. This could be any combination of PSRs,
or one of the coding standards made by PEAR or Zend. This means other developers can easily read and work
with your code, and applications that implement the components can have consistency even when working
with lots of third-party code.

• Read about PSR-0⁶
• Read about PSR-1⁷
• Read about PSR-2⁸
• Read about PSR-4⁹
• Read about PEAR Coding Standards¹⁰
• Read about Symfony Coding Standards¹¹

You can use PHP_CodeSniffer¹² to check code against any one of these recommendations, and plugins for text
editors like Sublime Text¹³ to be given real-time feedback.

You can fix the code layout automatically by using one of the following tools:

• One is the PHP Coding Standards Fixer¹⁴ which has a very well tested codebase.

¹http://www.php-fig.org/
²http://www.php-fig.org/psr/psr-0/
³http://www.php-fig.org/psr/psr-1/
⁴http://www.php-fig.org/psr/psr-2/
⁵http://www.php-fig.org/psr/psr-4/
⁶http://www.php-fig.org/psr/psr-0/
⁷http://www.php-fig.org/psr/psr-1/
⁸http://www.php-fig.org/psr/psr-2/
⁹http://www.php-fig.org/psr/psr-4/
¹⁰http://pear.php.net/manual/en/standards.php
¹¹http://symfony.com/doc/current/contributing/code/standards.html
¹²http://pear.php.net/package/PHP_CodeSniffer/
¹³https://github.com/benmatselby/sublime-phpcs
¹⁴http://cs.sensiolabs.org/

www.dbooks.org

http://www.php-fig.org/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-4/
http://pear.php.net/manual/en/standards.php
http://symfony.com/doc/current/contributing/code/standards.html
http://pear.php.net/package/PHP_CodeSniffer/
https://github.com/benmatselby/sublime-phpcs
http://cs.sensiolabs.org/
http://www.php-fig.org/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-4/
http://pear.php.net/manual/en/standards.php
http://symfony.com/doc/current/contributing/code/standards.html
http://pear.php.net/package/PHP_CodeSniffer/
https://github.com/benmatselby/sublime-phpcs
http://cs.sensiolabs.org/
https://www.dbooks.org/

Code Style Guide 5

• Also, the PHP Code Beautifier and Fixer¹⁵ tool which is included with PHP_CodeSniffer can be used
to adjust your code accordingly.

And you can run phpcs manually from shell:

1 phpcs -sw --standard=PSR2 file.php

It will show errors and describe how to fix them. It can also be helpful to include this command in a git hook.
That way, branches which contain violations against the chosen standard cannot enter the repository until
those violations have been fixed.

If you have PHP_CodeSniffer, then you can fix the code layout problems reported by it, automatically, with
the PHP Code Beautifier and Fixer¹⁶.

1 phpcbf -w --standard=PSR2 file.php

Another option is to use the PHPCoding Standards Fixer¹⁷. It will showwhich kind of errors the code structure
had before it fixed them.

1 php-cs-fixer fix -v --level=psr2 file.php

English is preferred for all symbol names and code infrastructure. Comments may be written in any language
easily readable by all current and future parties who may be working on the codebase.

¹⁵https://github.com/squizlabs/PHP_CodeSniffer/wiki/Fixing-Errors-Automatically
¹⁶https://github.com/squizlabs/PHP_CodeSniffer/wiki/Fixing-Errors-Automatically
¹⁷http://cs.sensiolabs.org/

https://github.com/squizlabs/PHP_CodeSniffer/wiki/Fixing-Errors-Automatically
https://github.com/squizlabs/PHP_CodeSniffer/wiki/Fixing-Errors-Automatically
http://cs.sensiolabs.org/
https://github.com/squizlabs/PHP_CodeSniffer/wiki/Fixing-Errors-Automatically
https://github.com/squizlabs/PHP_CodeSniffer/wiki/Fixing-Errors-Automatically
http://cs.sensiolabs.org/

3. Language Highlights

3.1 Programming Paradigms

PHP is a flexible, dynamic language that supports a variety of programming techniques. It has evolved
dramatically over the years, notably adding a solid object-oriented model in PHP 5.0 (2004), anonymous
functions and namespaces in PHP 5.3 (2009), and traits in PHP 5.4 (2012).

Object-oriented Programming

PHP has a very complete set of object-oriented programming features including support for classes, abstract
classes, interfaces, inheritance, constructors, cloning, exceptions, and more.

• Read about Object-oriented PHP¹
• Read about Traits²

Functional Programming

PHP supports first-class functions, meaning that a function can be assigned to a variable. Both user-defined
and built-in functions can be referenced by a variable and invoked dynamically. Functions can be passed
as arguments to other functions (a feature called Higher-order Functions) and functions can return other
functions.

Recursion, a feature that allows a function to call itself, is supported by the language, but most PHP code is
focused on iteration.

New anonymous functions (with support for closures) are present since PHP 5.3 (2009).

PHP 5.4 added the ability to bind closures to an object’s scope and also improved support for callables such
that they can be used interchangeably with anonymous functions in almost all cases.

• Continue reading on Functional Programming in PHP³
• Read about Anonymous Functions⁴
• Read about the Closure class⁵
• More details in the Closures RFC⁶
• Read about Callables⁷
• Read about dynamically invoking functions with call_user_func_array()⁸

¹http://php.net/language.oop5
²http://php.net/language.oop5.traits
³http://phptherightway.com/pages/Functional-Programming.html
⁴http://php.net/functions.anonymous
⁵http://php.net/class.closure
⁶https://wiki.php.net/rfc/closures
⁷http://php.net/language.types.callable
⁸http://php.net/function.call-user-func-array

www.dbooks.org

http://php.net/language.oop5
http://php.net/language.oop5.traits
http://phptherightway.com/pages/Functional-Programming.html
http://php.net/functions.anonymous
http://php.net/class.closure
https://wiki.php.net/rfc/closures
http://php.net/language.types.callable
http://php.net/function.call-user-func-array
http://php.net/language.oop5
http://php.net/language.oop5.traits
http://phptherightway.com/pages/Functional-Programming.html
http://php.net/functions.anonymous
http://php.net/class.closure
https://wiki.php.net/rfc/closures
http://php.net/language.types.callable
http://php.net/function.call-user-func-array
https://www.dbooks.org/

Language Highlights 7

Meta Programming

PHP supports various forms of meta-programming through mechanisms like the Reflection API and Magic
Methods. There are many Magic Methods available like __get(), __set(), __clone(), __toString(), __-
invoke(), etc. that allow developers to hook into class behavior. Ruby developers often say that PHP is lacking
method_missing, but it is available as __call() and __callStatic().

• Read about Magic Methods⁹
• Read about Reflection¹⁰
• Read about Overloading¹¹

3.2 Namespaces

As mentioned above, the PHP community has a lot of developers creating lots of code. This means that one
library’s PHP code might use the same class name as another. When both libraries are used in the same
namespace, they collide and cause trouble.

Namespaces solve this problem. As described in the PHP reference manual, namespaces may be compared
to operating system directories that namespace files; two files with the same name may co-exist in separate
directories. Likewise, two PHP classes with the same name may co-exist in separate PHP namespaces. It’s as
simple as that.

It is important for you to namespace your code so that it may be used by other developers without fear of
colliding with other libraries.

One recommended way to use namespaces is outlined in PSR-4¹², which aims to provide a standard file, class
and namespace convention to allow plug-and-play code.

In October 2014 the PHP-FIG deprecated the previous autoloading standard: PSR-0¹³. Both PSR-0 and PSR-4
are still perfectly usable. The latter requires PHP 5.3, so many PHP 5.2-only projects implement PSR-0.

If you’re going to use an autoloader standard for a new application or package, look into PSR-4.

• Read about Namespaces¹⁴
• Read about PSR-0¹⁵
• Read about PSR-4¹⁶

⁹http://php.net/language.oop5.magic
¹⁰http://php.net/intro.reflection
¹¹http://php.net/language.oop5.overloading
¹²http://www.php-fig.org/psr/psr-4/
¹³http://www.php-fig.org/psr/psr-0/
¹⁴http://php.net/language.namespaces
¹⁵http://www.php-fig.org/psr/psr-0/
¹⁶http://www.php-fig.org/psr/psr-4/

http://php.net/language.oop5.magic
http://php.net/intro.reflection
http://php.net/language.oop5.overloading
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://php.net/language.namespaces
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
http://php.net/language.oop5.magic
http://php.net/intro.reflection
http://php.net/language.oop5.overloading
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://php.net/language.namespaces
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/

Language Highlights 8

3.3 Standard PHP Library

The Standard PHP Library (SPL) is packaged with PHP and provides a collection of classes and interfaces. It
is made up primarily of commonly needed datastructure classes (stack, queue, heap, and so on), and iterators
which can traverse over these datastructures or your own classes which implement SPL interfaces.

• Read about the SPL¹⁷
• SPL video course on Lynda.com(Paid)¹⁸

3.4 Command Line Interface

PHP was created to write web applications, but is also useful for scripting command line interface (CLI)
programs. Command line PHP programs can help automate common tasks like testing, deployment, and
application administration.

CLI PHP programs are powerful because you can use your app’s code directly without having to create and
secure a web GUI for it. Just be sure not to put your CLI PHP scripts in your public web root!

Try running PHP from your command line:

1 > php -i

The -i option will print your PHP configuration just like the phpinfo()¹⁹ function.

The -a option provides an interactive shell, similar to ruby’s IRB or python’s interactive shell. There are a
number of other useful command line options²⁰, too.

Let’s write a simple “Hello, $name” CLI program. To try it out, create a file named hello.php, as below.

1 <?php

2 if ($argc !== 2) {

3 echo "Usage: php hello.php [name].\n";

4 exit(1);

5 }

6 $name = $argv[1];

7 echo "Hello, $name\n";

PHP sets up two special variables based on the arguments your script is run with. $argc²¹ is an integer variable
containing the argument count and $argv²² is an array variable containing each argument’s value. The first
argument is always the name of your PHP script file, in this case hello.php.

¹⁷http://php.net/book.spl
¹⁸http://www.lynda.com/PHP-tutorials/Up-Running-Standard-PHP-Library/175038-2.html
¹⁹http://php.net/function.phpinfo
²⁰http://php.net/features.commandline.options
²¹http://php.net/reserved.variables.argc
²²http://php.net/reserved.variables.argv

www.dbooks.org

http://php.net/book.spl
http://www.lynda.com/PHP-tutorials/Up-Running-Standard-PHP-Library/175038-2.html
http://php.net/function.phpinfo
http://php.net/features.commandline.options
http://php.net/reserved.variables.argc
http://php.net/reserved.variables.argv
http://php.net/book.spl
http://www.lynda.com/PHP-tutorials/Up-Running-Standard-PHP-Library/175038-2.html
http://php.net/function.phpinfo
http://php.net/features.commandline.options
http://php.net/reserved.variables.argc
http://php.net/reserved.variables.argv
https://www.dbooks.org/

Language Highlights 9

The exit() expression is used with a non-zero number to let the shell know that the command failed.
Commonly used exit codes can be found here²³.

To run our script, above, from the command line:

1 > php hello.php

2 Usage: php hello.php [name]

3 > php hello.php world

4 Hello, world

• Learn about running PHP from the command line²⁴
• Learn about setting up Windows to run PHP from the command line²⁵

3.5 Xdebug

One of the most useful tools in software development is a proper debugger. It allows you to trace the execution
of your code and monitor the contents of the stack. Xdebug, PHP’s debugger, can be utilized by various IDEs
to provide Breakpoints and stack inspection. It can also allow tools like PHPUnit and KCacheGrind to perform
code coverage analysis and code profiling.

If you find yourself in a bind, willing to resort to var_dump()/print_r(), and you still can’t find the solution
- maybe you need to use the debugger.

Installing Xdebug²⁶ can be tricky, but one of its most important features is “Remote Debugging” - if you
develop code locally and then test it inside a VM or on another server, Remote Debugging is the feature that
you will want to enable right away.

Traditionally, you will modify your Apache VHost or .htaccess file with these values:

1 php_value xdebug.remote_host 192.168.?.?

2 php_value xdebug.remote_port 9000

The “remote host” and “remote port” will correspond to your local computer and the port that you configure
your IDE to listen on. Then it’s just a matter of putting your IDE into “listen for connections” mode, and
loading the URL:

1 http://your-website.example.com/index.php?XDEBUG_SESSION_START=1

Your IDE will now intercept the current state as the script executes, allowing you to set breakpoints and probe
the values in memory.

Graphical debuggers make it very easy to step through code, inspect variables, and eval code against the live
runtime. Many IDE’s have built-in or plugin-based support for graphical debugging with Xdebug. MacGDBp
is a free, open-source, stand-alone Xdebug GUI for Mac.

²³http://www.gsp.com/cgi-bin/man.cgi?section=3&topic=sysexits
²⁴http://php.net/features.commandline
²⁵http://php.net/install.windows.commandline
²⁶http://xdebug.org/docs/install

http://www.gsp.com/cgi-bin/man.cgi?section=3&%3Btopic=sysexits
http://php.net/features.commandline
http://php.net/install.windows.commandline
http://xdebug.org/docs/install
http://www.gsp.com/cgi-bin/man.cgi?section=3&%3Btopic=sysexits
http://php.net/features.commandline
http://php.net/install.windows.commandline
http://xdebug.org/docs/install

Language Highlights 10

• Learn more about Xdebug²⁷
• Learn more about MacGDBp²⁸

²⁷http://xdebug.org/docs/
²⁸http://www.bluestatic.org/software/macgdbp/

www.dbooks.org

http://xdebug.org/docs/
http://www.bluestatic.org/software/macgdbp/
http://xdebug.org/docs/
http://www.bluestatic.org/software/macgdbp/
https://www.dbooks.org/

4. Dependency Management
There are a ton of PHP libraries, frameworks, and components to choose from. Your project will likely use
several of them â€“ these are project dependencies. Until recently, PHP did not have a good way to manage
these project dependencies. Even if you managed them manually, you still had to worry about autoloaders.
That is no longer an issue.

Currently there are two major package management systems for PHP â€“ Composer¹ and PEAR². Composer
is currently the most popular package manager for PHP, however for a long time PEAR was the primary
package manager in use. Knowing PEAR’s history is a good idea, since you may still find references to it even
if you never use it.

4.1 Composer and Packagist

Composer is a brilliant dependency manager for PHP. List your project’s dependencies in a composer.json
file and, with a few simple commands, Composer will automatically download your project’s dependencies
and setup autoloading for you. Composer is analogous to NPM in the node.js world, or Bundler in the Ruby
world.

There are already a lot of PHP libraries that are compatible with Composer, ready to be used in your project.
These “packages” are listed on Packagist³, the official repository for Composer-compatible PHP libraries.

How to Install Composer

The safest way to download composer is by following the official instructions⁴.
This will verify the installer is not corrupt or tampered with.
The installer installs Composer locally, in your current working directory.

We recommend installing it globally (e.g. a single copy in /usr/local/bin) - to do so, run this afterwards:

1 mv composer.phar /usr/local/bin/composer

Note: If the above fails due to permissions, prefix with sudo.

To run a locally installed Composer you’d use php composer.phar, globally it’s simply composer.

Installing on Windows

For Windows users the easiest way to get up and running is to use the ComposerSetup⁵ installer, which
performs a global install and sets up your $PATH so that you can just call composer from any directory in your
command line.

¹/#composer_and_packagist
²/#pear
³http://packagist.org/
⁴https://getcomposer.org/download/
⁵https://getcomposer.org/Composer-Setup.exe

http://packagist.org/
https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
http://packagist.org/
https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe

Dependency Management 12

How to Install Composer (manually)

Manually installing Composer is an advanced technique; however, there are various reasons why a developer
might prefer this method vs. using the interactive installation routine. The interactive installation checks your
PHP installation to ensure that:

• a sufficient version of PHP is being used
• .phar files can be executed correctly
• certain directory permissions are sufficient
• certain problematic extensions are not loaded
• certain php.ini settings are set

Since a manual installation performs none of these checks, you have to decide whether the trade-off is worth
it for you. As such, below is how to obtain Composer manually:

1 curl -s https://getcomposer.org/composer.phar -o $HOME/local/bin/composer

2 chmod +x $HOME/local/bin/composer

The path $HOME/local/bin (or a directory of your choice) should be in your $PATH environment variable. This
will result in a composer command being available.

When you come across documentation that states to run Composer as php composer.phar install, you can
substitute that with:

1 composer install

This section will assume you have installed composer globally.

How to Define and Install Dependencies

Composer keeps track of your project’s dependencies in a file called composer.json. You can manage it by
hand if you like, or use Composer itself. The composer require command adds a project dependency and if
you don’t have a composer.json file, one will be created. Here’s an example that adds Twig⁶ as a dependency
of your project.

1 composer require twig/twig:~1.8

Alternatively, the composer init command will guide you through creating a full composer.json file for
your project. Either way, once you’ve created your composer.json file you can tell Composer to download
and install your dependencies into the vendor/ directory. This also applies to projects you’ve downloaded
that already provide a composer.json file:

⁶http://twig.sensiolabs.org

www.dbooks.org

http://twig.sensiolabs.org/
http://twig.sensiolabs.org/
https://www.dbooks.org/

Dependency Management 13

1 composer install

Next, add this line to your application’s primary PHP file; this will tell PHP to use Composer’s autoloader for
your project dependencies.

1 <?php

2 require 'vendor/autoload.php';

Now you can use your project dependencies, and they’ll be autoloaded on demand.

Updating your dependencies

Composer creates a file called composer.lock which stores the exact version of each package it downloaded
when you first ran composer install. If you share your project with others, ensure the composer.lock file
is included, so that when they run composer install they’ll get the same versions as you. To update your
dependencies, run composer update. Don’t use composer update when deploying, only composer install,
otherwise you may end up with different package versions on production.

This is most useful when you define your version requirements flexibly. For instance, a version requirement
of ∼1.8 means “anything newer than 1.8.0, but less than 2.0.x-dev”. You can also use the * wildcard as
in 1.8.*. Now Composer’s composer update command will upgrade all your dependencies to the newest
version that fits the restrictions you define.

Update Notifications

To receive notifications about new version releases you can sign up for VersionEye⁷, a web service that can
monitor your GitHub and BitBucket accounts for composer.json files and send emails with new package
releases.

Checking your dependencies for security issues

The Security Advisories Checker⁸ is a web service and a command-line tool, both will examine your
composer.lock file and tell you if you need to update any of your dependencies.

Handling global dependencies with Composer

Composer can also handle global dependencies and their binaries. Usage is straight-forward, all you need to
do is prefix your command with global. If for example you wanted to install PHPUnit and have it available
globally, you’d run the following command:

⁷https://www.versioneye.com/
⁸https://security.sensiolabs.org/

https://www.versioneye.com/
https://security.sensiolabs.org/
https://www.versioneye.com/
https://security.sensiolabs.org/

Dependency Management 14

1 composer global require phpunit/phpunit

This will create a∼/.composer folder where your global dependencies reside. To have the installed packages’
binaries available everywhere, you’d then add the ∼/.composer/vendor/bin folder to your $PATH variable.

• Learn about Composer⁹

4.2 PEAR

A veteran package manager that some PHP developers enjoy is PEAR¹⁰. It behaves similarly to Composer, but
has some notable differences.

PEAR requires each package to have a specific structure, which means that the author of the package must
prepare it for usage with PEAR. Using a project which was not prepared to work with PEAR is not possible.

PEAR installs packages globally, which means after installing them once they are available to all projects on
that server. This can be good if many projects rely on the same package with the same version but might lead
to problems if version conflicts between two projects arise.

How to install PEAR

You can install PEAR by downloading the .phar installer and executing it. The PEAR documentation has
detailed install instructions¹¹ for every operating system.

If you are using Linux, you can also have a look at your distribution package manager. Debian and Ubuntu,
for example, have an apt php-pear package.

How to install a package

If the package is listed on the PEAR packages list¹², you can install it by specifying the official name:

1 pear install foo

If the package is hosted on another channel, you need to discover the channel first and also specify it when
installing. See the Using channel docs¹³ for more information on this topic.

• Learn about PEAR¹⁴

Handling PEAR dependencies with Composer

If you are already using Composer¹⁵ and you would like to install some PEAR code too, you can use Composer
to handle your PEAR dependencies. This example will install code from pear2.php.net:

⁹http://getcomposer.org/doc/00-intro.md
¹⁰http://pear.php.net/
¹¹http://pear.php.net/manual/en/installation.getting.php
¹²http://pear.php.net/packages.php
¹³http://pear.php.net/manual/en/guide.users.commandline.channels.php
¹⁴http://pear.php.net/
¹⁵/#composer_and_packagist

www.dbooks.org

http://getcomposer.org/doc/00-intro.md
http://pear.php.net/
http://pear.php.net/manual/en/installation.getting.php
http://pear.php.net/packages.php
http://pear.php.net/manual/en/guide.users.commandline.channels.php
http://pear.php.net/
http://getcomposer.org/doc/00-intro.md
http://pear.php.net/
http://pear.php.net/manual/en/installation.getting.php
http://pear.php.net/packages.php
http://pear.php.net/manual/en/guide.users.commandline.channels.php
http://pear.php.net/
https://www.dbooks.org/

Dependency Management 15

1 {

2 "repositories": [

3 {

4 "type": "pear",

5 "url": "http://pear2.php.net"

6 }

7],

8 "require": {

9 "pear-pear2/PEAR2_Text_Markdown": "*",

10 "pear-pear2/PEAR2_HTTP_Request": "*"

11 }

12 }

The first section "repositories" will be used to let Composer know it should “initialize” (or “discover” in
PEAR terminology) the pear repo. Then the require section will prefix the package name like this:

pear-channel/Package

The “pear” prefix is hardcoded to avoid any conflicts, as a pear channel could be the same as another packages
vendor name for example, then the channel short name (or full URL) can be used to reference which channel
the package is in.

When this code is installed it will be available in your vendor directory and automatically available through
the Composer autoloader:

vendor/pear-pear2.php.net/PEAR2_HTTP_Request/pear2/HTTP/Request.php

To use this PEAR package simply reference it like so:

1 <?php

2 $request = new pear2\HTTP\Request();

• Learn more about using PEAR with Composer¹⁶

¹⁶http://getcomposer.org/doc/05-repositories.md#pear

http://getcomposer.org/doc/05-repositories.md#pear
http://getcomposer.org/doc/05-repositories.md#pear

5. Coding Practices

5.1 The Basics

PHP is a vast language that allows coders of all levels the ability to produce code not only quickly, but
efficiently. However, while advancing through the language, we often forget the basics that we first learnt (or
overlooked) in favor of short cuts and/or bad habits. To help combat this common issue, this section is aimed
at reminding coders of the basic coding practices within PHP.

• Continue reading on The Basics¹

5.2 Date and Time

PHP has a class named DateTime to help you when reading, writing, comparing or calculating with date and
time. There are many date and time related functions in PHP besides DateTime, but it provides nice object-
oriented interface to most common uses. It can handle time zones, but that is outside this short introduction.

To start working with DateTime, convert raw date and time string to an object with createFromFormat()

factory method or do new DateTime to get the current date and time. Use format() method to convert
DateTime back to a string for output.

1 <?php

2 $raw = '22. 11. 1968';

3 $start = DateTime::createFromFormat('d. m. Y', $raw);

4

5 echo 'Start date: ' . $start->format('Y-m-d') . "\n";

Calculatingwith DateTime is possible with the DateInterval class. DateTime hasmethods like add() and sub()
that take a DateInterval as an argument. Do not write code that expect same number of seconds in every
day, both daylight saving and timezone alterations will break that assumption. Use date intervals instead.
To calculate date difference use the diff() method. It will return new DateInterval, which is super easy to
display.

¹http://phptherightway.com/pages/The-Basics.html

www.dbooks.org

http://phptherightway.com/pages/The-Basics.html
http://phptherightway.com/pages/The-Basics.html
https://www.dbooks.org/

Coding Practices 17

1 <?php

2 // create a copy of $start and add one month and 6 days

3 $end = clone $start;

4 $end->add(new DateInterval('P1M6D'));

5

6 $diff = $end->diff($start);

7 echo 'Difference: ' . $diff->format('%m month, %d days (total: %a days)') . "\n";

8 // Difference: 1 month, 6 days (total: 37 days)

On DateTime objects you can use standard comparison:

1 <?php

2 if ($start < $end) {

3 echo "Start is before end!\n";

4 }

One last example to demonstrate the DatePeriod class. It is used to iterate over recurring events. It can take
two DateTime objects, start and end, and the interval for which it will return all events in between.

1 <?php

2 // output all thursdays between $start and $end

3 $periodInterval = DateInterval::createFromDateString('first thursday');

4 $periodIterator = new DatePeriod($start, $periodInterval, $end, DatePeriod::EXCLUDE_START_\

5 DATE);

6 foreach ($periodIterator as $date) {

7 // output each date in the period

8 echo $date->format('Y-m-d') . ' ';

9 }

A popular PHP API extension is Carbon². It inherits everything in the DateTime class, so involves minimal
code alterations, but extra features include Localization support, further ways to add, subtract and format a
DateTime object, plus a means to test your code by simulating a date and time of your choosing.

• Read about DateTime³
• Read about date formatting⁴ (accepted date format string options)

5.3 Design Patterns

When you are building your application it is helpful to use common patterns in your code and common
patterns for the overall structure of your project. Using common patterns is helpful because it makes it much
easier to manage your code and lets other developers quickly understand how everything fits together.

²http://carbon.nesbot.com
³http://php.net/book.datetime
⁴http://php.net/function.date

http://carbon.nesbot.com/
http://php.net/book.datetime
http://php.net/function.date
http://carbon.nesbot.com/
http://php.net/book.datetime
http://php.net/function.date

Coding Practices 18

If you use a framework then most of the higher level code and project structure will be based on that
framework, so a lot of the pattern decisions are made for you. But it is still up to you to pick out the best
patterns to follow in the code you build on top of the framework. If, on the other hand, you are not using
a framework to build your application then you have to find the patterns that best suit the type and size of
application that you’re building.

• Continue reading on Design Patterns⁵

5.4 Working with UTF-8

This section was originally written by Alex Cabal⁶ over at PHP Best Practices⁷ and has been used as the basis
for our own UTF-8 advice.

There’s no one-liner. Be careful, detailed, and consistent.

Right now PHP does not support Unicode at a low level. There are ways to ensure that UTF-8 strings are
processed OK, but it’s not easy, and it requires digging in to almost all levels of the web app, from HTML to
SQL to PHP. We’ll aim for a brief, practical summary.

UTF-8 at the PHP level

The basic string operations, like concatenating two strings and assigning strings to variables, don’t need
anything special for UTF-8. However, most string functions, like strpos() and strlen(), do need special
consideration. These functions often have an mb_* counterpart: for example, mb_strpos() and mb_strlen().
These mb_* strings are made available to you via theMultibyte String Extension⁸, and are specifically designed
to operate on Unicode strings.

You must use the mb_* functions whenever you operate on a Unicode string. For example, if you use substr()
on a UTF-8 string, there’s a good chance the result will include some garbled half-characters. The correct
function to use would be the multibyte counterpart, mb_substr().

The hard part is remembering to use the mb_* functions at all times. If you forget even just once, your Unicode
string has a chance of being garbled during further processing.

Not all string functions have an mb_* counterpart. If there isn’t one for what you want to do, then you might
be out of luck.

You should use the mb_internal_encoding() function at the top of every PHP script you write (or at the top
of your global include script), and the mb_http_output() function right after it if your script is outputting to
a browser. Explicitly defining the encoding of your strings in every script will save you a lot of headaches
down the road.

Additionally, many PHP functions that operate on strings have an optional parameter letting you specify
the character encoding. You should always explicitly indicate UTF-8 when given the option. For example,

⁵http://phptherightway.com/pages/Design-Patterns.html
⁶https://alexcabal.com/
⁷https://phpbestpractices.org/#utf-8
⁸http://php.net/book.mbstring

www.dbooks.org

http://phptherightway.com/pages/Design-Patterns.html
https://alexcabal.com/
https://phpbestpractices.org/#utf-8
http://php.net/book.mbstring
http://phptherightway.com/pages/Design-Patterns.html
https://alexcabal.com/
https://phpbestpractices.org/#utf-8
http://php.net/book.mbstring
https://www.dbooks.org/

Coding Practices 19

htmlentities() has an option for character encoding, and you should always specify UTF-8 if dealing
with such strings. Note that as of PHP 5.4.0, UTF-8 is the default encoding for htmlentities() and
htmlspecialchars().

Finally, If you are building a distributed application and cannot be certain that the mbstring extension will be
enabled, then consider using the patchwork/utf8⁹ Composer package. This will use mbstring if it is available,
and fall back to non UTF-8 functions if not.

UTF-8 at the Database level

If your PHP script accesses MySQL, there’s a chance your strings could be stored as non-UTF-8 strings in the
database even if you follow all of the precautions above.

To make sure your strings go from PHP to MySQL as UTF-8, make sure your database and tables are all set
to the utf8mb4 character set and collation, and that you use the utf8mb4 character set in the PDO connection
string. See example code below. This is critically important.

Note that you must use the utf8mb4 character set for complete UTF-8 support, not the utf8 character set! See
Further Reading for why.

UTF-8 at the browser level

Use the mb_http_output() function to ensure that your PHP script outputs UTF-8 strings to your browser.

The browser will then need to be told by the HTTP response that this page should be considered as UTF-8.
The historic approach to doing that was to include the charset <meta> tag¹⁰ in your page’s <head> tag. This
approach is perfectly valid, but setting the charset in the Content-Type header is actually much faster¹¹.

1 <?php

2 // Tell PHP that we're using UTF-8 strings until the end of the script

3 mb_internal_encoding('UTF-8');

4

5 // Tell PHP that we'll be outputting UTF-8 to the browser

6 mb_http_output('UTF-8');

7

8 // Our UTF-8 test string

9 $string = 'Êl síla erin lû e-govaned vîn.';

10

11 // Transform the string in some way with a multibyte function

12 // Note how we cut the string at a non-Ascii character for demonstration purposes

13 $string = mb_substr($string, 0, 15);

14

15 // Connect to a database to store the transformed string

16 // See the PDO example in this document for more information

⁹https://packagist.org/packages/patchwork/utf8
¹⁰http://htmlpurifier.org/docs/enduser-utf8.html
¹¹https://developers.google.com/speed/docs/best-practices/rendering#SpecifyCharsetEarly

https://packagist.org/packages/patchwork/utf8
http://htmlpurifier.org/docs/enduser-utf8.html
https://developers.google.com/speed/docs/best-practices/rendering#SpecifyCharsetEarly
https://packagist.org/packages/patchwork/utf8
http://htmlpurifier.org/docs/enduser-utf8.html
https://developers.google.com/speed/docs/best-practices/rendering#SpecifyCharsetEarly

Coding Practices 20

17 // Note the `charset=utf8mb4` in the Data Source Name (DSN)

18 $link = new PDO(

19 'mysql:host=your-hostname;dbname=your-db;charset=utf8mb4',

20 'your-username',

21 'your-password',

22 array(

23 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,

24 PDO::ATTR_PERSISTENT => false

25)

26);

27

28 // Store our transformed string as UTF-8 in our database

29 // Your DB and tables are in the utf8mb4 character set and collation, right?

30 $handle = $link->prepare('insert into ElvishSentences (Id, Body) values (?, ?)');

31 $handle->bindValue(1, 1, PDO::PARAM_INT);

32 $handle->bindValue(2, $string);

33 $handle->execute();

34

35 // Retrieve the string we just stored to prove it was stored correctly

36 $handle = $link->prepare('select * from ElvishSentences where Id = ?');

37 $handle->bindValue(1, 1, PDO::PARAM_INT);

38 $handle->execute();

39

40 // Store the result into an object that we'll output later in our HTML

41 $result = $handle->fetchAll(\PDO::FETCH_OBJ);

42

43 header('Content-Type: text/html; charset=UTF-8');

44 ?><!doctype html>

45 <html>

46 <head>

47 <meta charset="UTF-8">

48 <title>UTF-8 test page</title>

49 </head>

50 <body>

51 <?php

52 foreach($result as $row){

53 print($row->Body); // This should correctly output our transformed UTF-8 stri\

54 ng to the browser

55 }

56 ?>

57 </body>

58 </html>

www.dbooks.org

https://www.dbooks.org/

Coding Practices 21

Further reading

• PHP Manual: String Operations¹²
• PHP Manual: String Functions¹³

– strpos()¹⁴
– strlen()¹⁵
– substr()¹⁶

• PHP Manual: Multibyte String Functions¹⁷
– mb_strpos()¹⁸
– mb_strlen()¹⁹
– mb_substr()²⁰
– mb_internal_encoding()²¹
– mb_http_output()²²
– htmlentities()²³
– htmlspecialchars()²⁴

• PHP UTF-8 Cheatsheet²⁵
• Handling UTF-8 with PHP²⁶
• Stack Overflow: What factors make PHP Unicode-incompatible?²⁷
• Stack Overflow: Best practices in PHP and MySQL with international strings²⁸
• How to support full Unicode in MySQL databases²⁹
• Bringing Unicode to PHP with Portable UTF-8³⁰
• Stack Overflow: DOMDocument loadHTML does not encode UTF-8 correctly³¹

¹²http://php.net/language.operators.string
¹³http://php.net/ref.strings
¹⁴http://php.net/function.strpos
¹⁵http://php.net/function.strlen
¹⁶http://php.net/function.substr
¹⁷http://php.net/ref.mbstring
¹⁸http://php.net/function.mb-strpos
¹⁹http://php.net/function.mb-strlen
²⁰http://php.net/function.mb-substr
²¹http://php.net/function.mb-internal-encoding
²²http://php.net/function.mb-http-output
²³http://php.net/function.htmlentities
²⁴http://php.net/function.htmlspecialchars
²⁵http://blog.loftdigital.com/blog/php-utf-8-cheatsheet
²⁶http://www.phpwact.org/php/i18n/utf-8
²⁷http://stackoverflow.com/questions/571694/what-factors-make-php-unicode-incompatible
²⁸http://stackoverflow.com/questions/140728/best-practices-in-php-and-mysql-with-international-strings
²⁹http://mathiasbynens.be/notes/mysql-utf8mb4
³⁰http://www.sitepoint.com/bringing-unicode-to-php-with-portable-utf8/
³¹http://stackoverflow.com/questions/8218230/php-domdocument-loadhtml-not-encoding-utf-8-correctly

http://php.net/language.operators.string
http://php.net/ref.strings
http://php.net/function.strpos
http://php.net/function.strlen
http://php.net/function.substr
http://php.net/ref.mbstring
http://php.net/function.mb-strpos
http://php.net/function.mb-strlen
http://php.net/function.mb-substr
http://php.net/function.mb-internal-encoding
http://php.net/function.mb-http-output
http://php.net/function.htmlentities
http://php.net/function.htmlspecialchars
http://blog.loftdigital.com/blog/php-utf-8-cheatsheet
http://www.phpwact.org/php/i18n/utf-8
http://stackoverflow.com/questions/571694/what-factors-make-php-unicode-incompatible
http://stackoverflow.com/questions/140728/best-practices-in-php-and-mysql-with-international-strings
http://mathiasbynens.be/notes/mysql-utf8mb4
http://www.sitepoint.com/bringing-unicode-to-php-with-portable-utf8/
http://stackoverflow.com/questions/8218230/php-domdocument-loadhtml-not-encoding-utf-8-correctly
http://php.net/language.operators.string
http://php.net/ref.strings
http://php.net/function.strpos
http://php.net/function.strlen
http://php.net/function.substr
http://php.net/ref.mbstring
http://php.net/function.mb-strpos
http://php.net/function.mb-strlen
http://php.net/function.mb-substr
http://php.net/function.mb-internal-encoding
http://php.net/function.mb-http-output
http://php.net/function.htmlentities
http://php.net/function.htmlspecialchars
http://blog.loftdigital.com/blog/php-utf-8-cheatsheet
http://www.phpwact.org/php/i18n/utf-8
http://stackoverflow.com/questions/571694/what-factors-make-php-unicode-incompatible
http://stackoverflow.com/questions/140728/best-practices-in-php-and-mysql-with-international-strings
http://mathiasbynens.be/notes/mysql-utf8mb4
http://www.sitepoint.com/bringing-unicode-to-php-with-portable-utf8/
http://stackoverflow.com/questions/8218230/php-domdocument-loadhtml-not-encoding-utf-8-correctly

6. Dependency Injection
From Wikipedia¹:

Dependency injection is a software design pattern that allows the removal of hard-coded
dependencies and makes it possible to change them, whether at run-time or compile-time.

This quote makes the concept sound much more complicated than it actually is. Dependency Injection is
providing a component with its dependencies either through constructor injection, method calls or the setting
of properties. It is that simple.

6.1 Basic Concept

We can demonstrate the concept with a simple, yet naive example.

Here we have a Database class that requires an adapter to speak to the database. We instantiate the adapter
in the constructor and create a hard dependency. This makes testing difficult and means the Database class
is very tightly coupled to the adapter.

1 <?php

2 namespace Database;

3

4 class Database

5 {

6 protected $adapter;

7

8 public function __construct()

9 {

10 $this->adapter = new MySqlAdapter;

11 }

12 }

13

14 class MysqlAdapter {}

This code can be refactored to use Dependency Injection and therefore loosen the dependency.

¹http://en.wikipedia.org/wiki/Dependency_injection

www.dbooks.org

http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection
https://www.dbooks.org/

Dependency Injection 23

1 <?php

2 namespace Database;

3

4 class Database

5 {

6 protected $adapter;

7

8 public function __construct(MySqlAdapter $adapter)

9 {

10 $this->adapter = $adapter;

11 }

12 }

13

14 class MysqlAdapter {}

Now we are giving the Database class its dependency rather than it creating it itself. We could even create
a method that would accept an argument of the dependency and set it that way, or if the $adapter property
was public we could set it directly.

6.2 Complex Problem

If you have ever read about Dependency Injection then you have probably seen the terms “Inversion of
Control” or “Dependency Inversion Principle”. These are the complex problems that Dependency Injection
solves.

Inversion of Control

Inversion of Control is as it says, “inverting the control” of a system by keeping organizational control entirely
separate from our objects. In terms of Dependency Injection, this means loosening our dependencies by
controlling and instantiating them elsewhere in the system.

For years, PHP frameworks have been achieving Inversion of Control, however, the question became, which
part of control are you inverting, and where to? For example, MVC frameworks would generally provide a
super object or base controller that other controllers must extend to gain access to its dependencies. This is
Inversion of Control, however, instead of loosening dependencies, this method simply moved them.

Dependency Injection allows us to more elegantly solve this problem by only injecting the dependencies we
need, when we need them, without the need for any hard coded dependencies at all.

Dependency Inversion Principle

Dependency Inversion Principle is the “D” in the S.O.L.I.D set of object oriented design principles that states
one should “Depend on Abstractions. Do not depend on concretions.”. Put simply, this means our dependencies
should be interfaces/contracts or abstract classes rather than concrete implementations. We can easily refactor
the above example to follow this principle.

Dependency Injection 24

1 <?php

2 namespace Database;

3

4 class Database

5 {

6 protected $adapter;

7

8 public function __construct(AdapterInterface $adapter)

9 {

10 $this->adapter = $adapter;

11 }

12 }

13

14 interface AdapterInterface {}

15

16 class MysqlAdapter implements AdapterInterface {}

There are several benefits to the Database class now depending on an interface rather than a concretion.

Consider that you are working in a team and the adapter is being worked on by a colleague. In our first
example, we would have to wait for said colleague to finish the adapter before we could properly mock it for
our unit tests. Now that the dependency is an interface/contract we can happily mock that interface knowing
that our colleague will build the adapter based on that contract.

An even bigger benefit to this method is that our code is now much more scalable. If a year down the line we
decide that we want to migrate to a different type of database, we can write an adapter that implements the
original interface and inject that instead, no more refactoring would be required as we can ensure that the
adapter follows the contract set by the interface.

6.3 Containers

The first thing you should understand about Dependency Injection Containers is that they are not the same
thing as Dependency Injection. A container is a convenience utility that helps us implement Dependency
Injection, however, they can be and often aremisused to implement an anti-pattern, Service Location. Injecting
a DI container as a Service Locator in to your classes arguably creates a harder dependency on the container
than the dependency you are replacing. It also makes your code much less transparent and ultimately harder
to test.

Most modern frameworks have their own Dependency Injection Container that allows you to wire your
dependencies together through configuration. What this means in practice is that you can write application
code that is as clean and de- coupled as the framework it is built on.

6.4 Further Reading

• Learning about Dependency Injection and PHP²

²http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php

www.dbooks.org

http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
https://www.dbooks.org/

Dependency Injection 25

• What is Dependency Injection?³
• Dependency Injection: An analogy⁴
• Dependency Injection: Huh?⁵
• Dependency Injection as a tool for testing⁶

³http://fabien.potencier.org/article/11/what-is-dependency-injection
⁴https://mwop.net/blog/260-Dependency-Injection-An-analogy.html
⁵http://net.tutsplus.com/tutorials/php/dependency-injection-huh/
⁶http://philipobenito.github.io/dependency-injection-as-a-tool-for-testing/

http://fabien.potencier.org/article/11/what-is-dependency-injection
https://mwop.net/blog/260-Dependency-Injection-An-analogy.html
http://net.tutsplus.com/tutorials/php/dependency-injection-huh/
http://philipobenito.github.io/dependency-injection-as-a-tool-for-testing/
http://fabien.potencier.org/article/11/what-is-dependency-injection
https://mwop.net/blog/260-Dependency-Injection-An-analogy.html
http://net.tutsplus.com/tutorials/php/dependency-injection-huh/
http://philipobenito.github.io/dependency-injection-as-a-tool-for-testing/

7. Databases
Many times your PHP code will use a database to persist information. You have a few options to connect
and interact with your database. The recommended option until PHP 5.1.0 was to use native drivers such as
mysqli¹, pgsql², mssql³, etc.

Native drivers are great if you are only using one database in your application, but if, for example, you are
using MySQL and a little bit of MSSQL, or you need to connect to an Oracle database, then you will not be
able to use the same drivers. You’ll need to learn a brand new API for each database — and that can get silly.

7.1 MySQL Extension

The mysql⁴ extension for PHP is incredibly old and has superseded by two other extensions:

• mysqli⁵
• pdo⁶

Not only did development stop long ago on mysql⁷, but it was deprecated as of PHP 5.5.0⁸, and has been
officially removed in PHP 7.0⁹.

To save digging into your php.ini settings to see which module you are using, one option is to search for
mysql_* in your editor of choice. If any functions such as mysql_connect() and mysql_query() show up, then
mysql is in use.

Even if you are not using PHP 7.0 yet, failing to consider this upgrade as soon as possible will lead to greater
hardship when the PHP 7.0 upgrade does come about. The best option is to replace mysql usage with mysqli¹⁰
or PDO¹¹ in your applications within your own development schedules so you won’t be rushed later on.

If you are upgrading from mysql¹² to mysqli¹³, beware lazy upgrade guides that suggest you can simply
find and replace mysql_*with mysqli_*. Not only is that a gross oversimplification, it misses out on the
advantages that mysqli provides, such as parameter binding, which is also offered in PDO¹⁴.

¹http://php.net/mysqli
²http://php.net/pgsql
³http://php.net/mssql
⁴http://php.net/mysql
⁵http://php.net/mysqli
⁶http://php.net/pdo
⁷http://php.net/mysql
⁸http://php.net/migration55.deprecated
⁹http://php.net/manual/en/migration70.removed-exts-sapis.php
¹⁰http://php.net/mysqli
¹¹http://php.net/pdo
¹²http://php.net/mysql
¹³http://php.net/mysqli
¹⁴http://php.net/pdo

www.dbooks.org

http://php.net/mysqli
http://php.net/pgsql
http://php.net/mssql
http://php.net/mysql
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysql
http://php.net/migration55.deprecated
http://php.net/manual/en/migration70.removed-exts-sapis.php
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysql
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysqli
http://php.net/pgsql
http://php.net/mssql
http://php.net/mysql
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysql
http://php.net/migration55.deprecated
http://php.net/manual/en/migration70.removed-exts-sapis.php
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysql
http://php.net/mysqli
http://php.net/pdo
https://www.dbooks.org/

Databases 27

• PHP: Choosing an API for MySQL¹⁵
• PDO Tutorial for MySQL Developers¹⁶

7.2 PDO Extension

PDO¹⁷ is a database connection abstraction library — built into PHP since 5.1.0 — that provides a common
interface to talk with many different databases. For example, you can use basically identical code to interface
with MySQL or SQLite:

1 <?php

2 // PDO + MySQL

3 $pdo = new PDO('mysql:host=example.com;dbname=database', 'user', 'password');

4 $statement = $pdo->query("SELECT some_field FROM some_table");

5 $row = $statement->fetch(PDO::FETCH_ASSOC);

6 echo htmlentities($row['some_field']);

7

8 // PDO + SQLite

9 $pdo = new PDO('sqlite:/path/db/foo.sqlite');

10 $statement = $pdo->query("SELECT some_field FROM some_table");

11 $row = $statement->fetch(PDO::FETCH_ASSOC);

12 echo htmlentities($row['some_field']);

PDO will not translate your SQL queries or emulate missing features; it is purely for connecting to multiple
types of database with the same API.

More importantly, PDO allows you to safely inject foreign input (e.g. IDs) into your SQL queries without
worrying about database SQL injection attacks. This is possible using PDO statements and bound parameters.

Let’s assume a PHP script receives a numeric ID as a query parameter. This ID should be used to fetch a user
record from a database. This is the wrong way to do this:

1 <?php

2 $pdo = new PDO('sqlite:/path/db/users.db');

3 $pdo->query("SELECT name FROM users WHERE id = " . $_GET['id']); // <-- NO!

This is terrible code. You are inserting a raw query parameter into a SQL query. This will get you hacked
in a heartbeat, using a practice called SQL Injection¹⁸. Just imagine if a hacker passes in an inventive
id parameter by calling a URL like http://domain.com/?id=1%3BDELETE+FROM+users. This will set the
$_GET['id'] variable to 1;DELETE FROM userswhich will delete all of your users! Instead, you should sanitize
the ID input using PDO bound parameters.

¹⁵http://php.net/mysqlinfo.api.choosing
¹⁶http://wiki.hashphp.org/PDO_Tutorial_for_MySQL_Developers
¹⁷http://php.net/pdo
¹⁸http://wiki.hashphp.org/Validation

http://php.net/mysqlinfo.api.choosing
http://wiki.hashphp.org/PDO_Tutorial_for_MySQL_Developers
http://php.net/pdo
http://wiki.hashphp.org/Validation
http://php.net/mysqlinfo.api.choosing
http://wiki.hashphp.org/PDO_Tutorial_for_MySQL_Developers
http://php.net/pdo
http://wiki.hashphp.org/Validation

Databases 28

1 <?php

2 $pdo = new PDO('sqlite:/path/db/users.db');

3 $stmt = $pdo->prepare('SELECT name FROM users WHERE id = :id');

4 $id = filter_input(INPUT_GET, 'id', FILTER_SANITIZE_NUMBER_INT); // <-- filter your data f\

5 irst (see [Data Filtering](#data_filtering)), especially important for INSERT, UPDATE, etc\

6 .

7 $stmt->bindParam(':id', $id, PDO::PARAM_INT); // <-- Automatically sanitized for SQL by PDO

8 $stmt->execute();

This is correct code. It uses a bound parameter on a PDO statement. This escapes the foreign input ID before
it is introduced to the database preventing potential SQL injection attacks.

For writes, such as INSERT or UPDATE, it’s especially critical to still filter your data first and sanitize it
for other things (removal of HTML tags, JavaScript, etc). PDO will only sanitize it for SQL, not for your
application.

• Learn about PDO¹⁹

You should also be aware that database connections use up resources and it was not unheard-of to have
resources exhausted if connections were not implicitly closed, however this was more common in other
languages. Using PDO you can implicitly close the connection by destroying the object by ensuring all
remaining references to it are deleted, i.e. set to NULL. If you don’t do this explicitly, PHP will automatically
close the connection when your script ends - unless of course you are using persistent connections.

• Learn about PDO connections²⁰

7.3 Interacting with Databases

When developers first start to learn PHP, they often end up mixing their database interaction up with their
presentation logic, using code that might look like this:

1

2 <?php

3 foreach ($db->query('SELECT * FROM table') as $row) {

4 echo "".$row['field1']." - ".$row['field1']."";

5 }

6 ?>

7

This is bad practice for all sorts of reasons, mainly that it’s hard to debug, hard to test, hard to read and it is
going to output a lot of fields if you don’t put a limit on there.

While there are many other solutions to doing this - depending on if you prefer OOP²¹ or functional
programming²² - there must be some element of separation.

¹⁹http://php.net/book.pdo
²⁰http://php.net/pdo.connections
²¹/#object-oriented-programming
²²/#functional-programming

www.dbooks.org

http://php.net/book.pdo
http://php.net/pdo.connections
http://php.net/book.pdo
http://php.net/pdo.connections
https://www.dbooks.org/

Databases 29

Consider the most basic step:

1 <?php

2 function getAllFoos($db) {

3 return $db->query('SELECT * FROM table');

4 }

5

6 foreach (getAllFoos($db) as $row) {

7 echo "".$row['field1']." - ".$row['field1'].""; // BAD!!

8 }

That is a good start. Put those two items in two different files and you’ve got some clean separation.

Create a class to place that method in and you have a “Model”. Create a simple .php file to put the presentation
logic in and you have a “View”, which is very nearly MVC²³ - a common OOP architecture for most
frameworks²⁴.

foo.php

1 <?php

2 $db = new PDO('mysql:host=localhost;dbname=testdb;charset=utf8', 'username', 'password');

3

4 // Make your model available

5 include 'models/FooModel.php';

6

7 // Create an instance

8 $fooModel = new FooModel($db);

9 // Get the list of Foos

10 $fooList = $fooModel->getAllFoos();

11

12 // Show the view

13 include 'views/foo-list.php';

models/FooModel.php

²³http://code.tutsplus.com/tutorials/mvc-for-noobs--net-10488
²⁴/#frameworks

http://code.tutsplus.com/tutorials/mvc-for-noobs--net-10488
http://code.tutsplus.com/tutorials/mvc-for-noobs--net-10488

Databases 30

1 <?php

2 class FooModel

3 {

4 protected $db;

5

6 public function __construct(PDO $db)

7 {

8 $this->db = $db;

9 }

10

11 public function getAllFoos() {

12 return $this->db->query('SELECT * FROM table');

13 }

14 }

views/foo-list.php

1 <?php foreach ($fooList as $row): ?>

2 <?= $row['field1'] ?> - <?= $row['field1'] ?>

3 <?php endforeach ?>

This is essentially the same as what most modern frameworks are doing, albeit a little more manual. You
might not need to do all of that every time, but mixing together too much presentation logic and database
interaction can be a real problem if you ever want to unit-test²⁵ your application.

PHPBridge²⁶ has a great resource called Creating a Data Class²⁷ which covers a very similar topic, and is great
for developers just getting used to the concept of interacting with databases.

7.4 Abstraction Layers

Many frameworks provide their own abstraction layer which may or may not sit on top of PDO²⁸. These will
often emulate features for one database system that is missing from another by wrapping your queries in PHP
methods, giving you actual database abstraction instead of just the connection abstraction that PDO provides.
This will of course add a little overhead, but if you are building a portable application that needs to work with
MySQL, PostgreSQL and SQLite then a little overhead will be worth it the sake of code cleanliness.

Some abstraction layers have been built using the PSR-0²⁹ or PSR-4³⁰ namespace standards so can be installed
in any application you like:

• Aura SQL³¹

²⁵/#unit-testing
²⁶http://phpbridge.org/
²⁷http://phpbridge.org/intro-to-php/creating_a_data_class
²⁸http://php.net/book.pdo
²⁹http://www.php-fig.org/psr/psr-0/
³⁰http://www.php-fig.org/psr/psr-4/
³¹https://github.com/auraphp/Aura.Sql

www.dbooks.org

http://phpbridge.org/
http://phpbridge.org/intro-to-php/creating_a_data_class
http://php.net/book.pdo
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
https://github.com/auraphp/Aura.Sql
http://phpbridge.org/
http://phpbridge.org/intro-to-php/creating_a_data_class
http://php.net/book.pdo
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
https://github.com/auraphp/Aura.Sql
https://www.dbooks.org/

Databases 31

• Doctrine2 DBAL³²
• Propel³³
• Zend-db³⁴

³²http://www.doctrine-project.org/projects/dbal.html
³³http://propelorm.org/
³⁴https://packages.zendframework.com/docs/latest/manual/en/index.html#zendframework/zend-db

http://www.doctrine-project.org/projects/dbal.html
http://propelorm.org/
https://packages.zendframework.com/docs/latest/manual/en/index.html#zendframework/zend-db
http://www.doctrine-project.org/projects/dbal.html
http://propelorm.org/
https://packages.zendframework.com/docs/latest/manual/en/index.html#zendframework/zend-db

8. Templating
Templates provide a convenient way of separating your controller and domain logic from your presentation
logic. Templates typically contain the HTML of your application, but may also be used for other formats,
such as XML. Templates are often referred to as “views”, which make up part of the second component of
the modelâ€“viewâ€“controller¹ (MVC) software architecture pattern.

8.1 Benefits

The main benefit to using templates is the clear separation they create between the presentation logic and the
rest of your application. Templates have the sole responsibility of displaying formatted content. They are not
responsible for data lookup, persistence or other more complex tasks. This leads to cleaner, more readable code
which is especially helpful in a team environment where developers work on the server-side code (controllers,
models) and designers work on the client-side code (markup).

Templates also improve the organization of presentation code. Templates are typically placed in a “views”
folder, each defined within a single file. This approach encourages code reuse where larger blocks of code are
broken into smaller, reusable pieces, often called partials. For example, your site header and footer can each
be defined as templates, which are then included before and after each page template.

Finally, depending on the library you use, templates can offer more security by automatically escaping user-
generated content. Some libraries even offer sand-boxing, where template designers are only given access to
white-listed variables and functions.

8.2 Plain PHP Templates

Plain PHP templates are simply templates that use native PHP code. They are a natural choice since PHP is
actually a template language itself. That simply means that you can combine PHP code within other code,
like HTML. This is beneficial to PHP developers as there is no new syntax to learn, they know the functions
available to them, and their code editors already have PHP syntax highlighting and auto-completion built-in.
Further, plain PHP templates tend to be very fast as no compiling stage is required.

Every modern PHP framework employs some kind of template system, most of which use plain PHP by
default. Outside of frameworks, libraries like Plates² or Aura.View³ make working with plain PHP templates
easier by offering modern template functionality such as inheritance, layouts and extensions.

Simple example of a plain PHP template

Using the Plates⁴ library.

¹http://phptherightway.com/pages/Design-Patterns.html#model-view-controller
²http://platesphp.com/
³https://github.com/auraphp/Aura.View
⁴http://platesphp.com/

www.dbooks.org

http://phptherightway.com/pages/Design-Patterns.html#model-view-controller
http://platesphp.com/
https://github.com/auraphp/Aura.View
http://platesphp.com/
http://phptherightway.com/pages/Design-Patterns.html#model-view-controller
http://platesphp.com/
https://github.com/auraphp/Aura.View
http://platesphp.com/
https://www.dbooks.org/

Templating 33

1 <?php // user_profile.php ?>

2

3 <?php $this->insert('header', ['title' => 'User Profile']) ?>

4

5 <h1>User Profile</h1>

6 <p>Hello, <?=$this->escape($name)?></p>

7

8 <?php $this->insert('footer') ?>

Example of plain PHP templates using inheritance

Using the Plates⁵ library.

1 <?php // template.php ?>

2

3 <html>

4 <head>

5 <title><?=$title?></title>

6 </head>

7 <body>

8

9 <main>

10 <?=$this->section('content')?>

11 </main>

12

13 </body>

14 </html>

1 <?php // user_profile.php ?>

2

3 <?php $this->layout('template', ['title' => 'User Profile']) ?>

4

5 <h1>User Profile</h1>

6 <p>Hello, <?=$this->escape($name)?></p>

8.3 Compiled Templates

While PHP has evolved into a mature, object oriented language, it hasn’t improved much⁶ as a templating
language. Compiled templates, like Twig⁷, Brainy⁸, or Smarty⁹*, fill this void by offering a new syntax that

⁵http://platesphp.com/
⁶http://fabien.potencier.org/article/34/templating-engines-in-php
⁷http://twig.sensiolabs.org/
⁸https://github.com/box/brainy
⁹http://www.smarty.net/

http://platesphp.com/
http://fabien.potencier.org/article/34/templating-engines-in-php
http://twig.sensiolabs.org/
https://github.com/box/brainy
http://www.smarty.net/
http://platesphp.com/
http://fabien.potencier.org/article/34/templating-engines-in-php
http://twig.sensiolabs.org/
https://github.com/box/brainy
http://www.smarty.net/

Templating 34

has been geared specifically to templating. From automatic escaping, to inheritance and simplified control
structures, compiled templates are designed to be easier to write, cleaner to read and safer to use. Compiled
templates can even be shared across different languages, Mustache¹⁰ being a good example of this. Since these
templates must be compiled there is a slight performance hit, however this is very minimal when proper
caching is used.

*While Smarty offers automatic escaping, this feature is NOT enabled by default.

Simple example of a compiled template

Using the Twig¹¹ library.

1 {% raw %}

2 {% include 'header.html' with {'title': 'User Profile'} %}

3

4 <h1>User Profile</h1>

5 <p>Hello, {{ name }}</p>

6

7 {% include 'footer.html' %}

8 {% endraw %}

Example of compiled templates using inheritance

Using the Twig¹² library.

1 {% raw %}

2 // template.html

3

4 <html>

5 <head>

6 <title>{% block title %}{% endblock %}</title>

7 </head>

8 <body>

9

10 <main>

11 {% block content %}{% endblock %}

12 </main>

13

14 </body>

15 </html>

16 {% endraw %}

¹⁰http://mustache.github.io/
¹¹http://twig.sensiolabs.org/
¹²http://twig.sensiolabs.org/

www.dbooks.org

http://mustache.github.io/
http://twig.sensiolabs.org/
http://twig.sensiolabs.org/
http://mustache.github.io/
http://twig.sensiolabs.org/
http://twig.sensiolabs.org/
https://www.dbooks.org/

Templating 35

1 {% raw %}

2 // user_profile.html

3

4 {% extends "template.html" %}

5

6 {% block title %}User Profile{% endblock %}

7 {% block content %}

8 <h1>User Profile</h1>

9 <p>Hello, {{ name }}</p>

10 {% endblock %}

11 {% endraw %}

8.4 Further Reading

Articles & Tutorials

• Templating Engines in PHP¹³
• An Introduction to Views & Templating in CodeIgniter¹⁴
• Getting Started With PHP Templating¹⁵
• Roll Your Own Templating System in PHP¹⁶
• Master Pages¹⁷
• Working With Templates in Symfony 2¹⁸
• Writing Safer Templates¹⁹

Libraries

• Aura.View²⁰ (native)
• Blade²¹ (compiled, framework specific)
• Brainy²² (compiled)
• Dwoo²³ (compiled)
• Latte²⁴ (compiled)
• Mustache²⁵ (compiled)

¹³http://fabien.potencier.org/article/34/templating-engines-in-php
¹⁴http://code.tutsplus.com/tutorials/an-introduction-to-views-templating-in-codeigniter--net-25648
¹⁵http://www.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
¹⁶http://code.tutsplus.com/tutorials/roll-your-own-templating-system-in-php--net-16596
¹⁷https://laracasts.com/series/laravel-from-scratch/episodes/7
¹⁸http://code.tutsplus.com/tutorials/working-with-templates-in-symfony-2--cms-21172
¹⁹https://github.com/box/brainy/wiki/Writing-Safe-Templates
²⁰https://github.com/auraphp/Aura.View
²¹http://laravel.com/docs/blade
²²https://github.com/box/brainy
²³http://dwoo.org/
²⁴https://github.com/nette/latte
²⁵https://github.com/bobthecow/mustache.php

http://fabien.potencier.org/article/34/templating-engines-in-php
http://code.tutsplus.com/tutorials/an-introduction-to-views-templating-in-codeigniter--net-25648
http://www.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
http://code.tutsplus.com/tutorials/roll-your-own-templating-system-in-php--net-16596
https://laracasts.com/series/laravel-from-scratch/episodes/7
http://code.tutsplus.com/tutorials/working-with-templates-in-symfony-2--cms-21172
https://github.com/box/brainy/wiki/Writing-Safe-Templates
https://github.com/auraphp/Aura.View
http://laravel.com/docs/blade
https://github.com/box/brainy
http://dwoo.org/
https://github.com/nette/latte
https://github.com/bobthecow/mustache.php
http://fabien.potencier.org/article/34/templating-engines-in-php
http://code.tutsplus.com/tutorials/an-introduction-to-views-templating-in-codeigniter--net-25648
http://www.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
http://code.tutsplus.com/tutorials/roll-your-own-templating-system-in-php--net-16596
https://laracasts.com/series/laravel-from-scratch/episodes/7
http://code.tutsplus.com/tutorials/working-with-templates-in-symfony-2--cms-21172
https://github.com/box/brainy/wiki/Writing-Safe-Templates
https://github.com/auraphp/Aura.View
http://laravel.com/docs/blade
https://github.com/box/brainy
http://dwoo.org/
https://github.com/nette/latte
https://github.com/bobthecow/mustache.php

Templating 36

• PHPTAL²⁶ (compiled)
• Plates²⁷ (native)
• Smarty²⁸ (compiled)
• Twig²⁹ (compiled)
• ZendView³⁰ (native, framework specific)

²⁶http://phptal.org/
²⁷http://platesphp.com/
²⁸http://www.smarty.net/
²⁹http://twig.sensiolabs.org/
³⁰http://framework.zend.com/manual/2.3/en/modules/zend.view.quick-start.html

www.dbooks.org

http://phptal.org/
http://platesphp.com/
http://www.smarty.net/
http://twig.sensiolabs.org/
http://framework.zend.com/manual/2.3/en/modules/zend.view.quick-start.html
http://phptal.org/
http://platesphp.com/
http://www.smarty.net/
http://twig.sensiolabs.org/
http://framework.zend.com/manual/2.3/en/modules/zend.view.quick-start.html
https://www.dbooks.org/

9. Errors and Exceptions

9.1 Errors

In many “exception-heavy” programming languages, whenever anything goes wrong an exception will be
thrown. This is certainly a viable way to do things, but PHP is an “exception-light” programming language.
While it does have exceptions and more of the core is starting to use them when working with objects, most
of PHP itself will try to keep processing regardless of what happens, unless a fatal error occurs.

For example:

1 $ php -a

2 php > echo $foo;

3 Notice: Undefined variable: foo in php shell code on line 1

This is only a notice error, and PHP will happily carry on. This can be confusing for those coming from
“exception-heavy” languages, because referencing a missing variable in Python for example will throw an
exception:

1 $ python

2 >>> print foo

3 Traceback (most recent call last):

4 File "<stdin>", line 1, in <module>

5 NameError: name 'foo' is not defined

The only real difference is that Python will freak out over any small thing, so that developers can be super sure
any potential issue or edge-case is caught, whereas PHP will keep on processing unless something extreme
happens, at which point it will throw an error and report it.

Error Severity

PHP has several levels of error severity. The three most common types of messages are errors, notices and
warnings. These have different levels of severity; E_ERROR, E_NOTICE, and E_WARNING. Errors are fatal run-
time errors and are usually caused by faults in your code and need to be fixed as they’ll cause PHP to stop
executing. Notices are advisory messages caused by code that may or may not cause problems during the
execution of the script, execution is not halted. Warnings are non-fatal errors, execution of the script will not
be halted.

Another type of error message reported at compile time are E_STRICT messages. These messages are used to
suggest changes to your code to help ensure best interoperability and forward compatibility with upcoming
versions of PHP.

Errors and Exceptions 38

Changing PHP’s Error Reporting Behaviour

Error Reporting can be changed by using PHP settings and/or PHP function calls. Using the built in PHP
function error_reporting() you can set the level of errors for the duration of the script execution by passing
one of the predefined error level constants, meaning if you only want to see Errors and Warnings - but not
Notices - then you can configure that:

1 <?php

2 error_reporting(E_ERROR | E_WARNING);

You can also control whether or not errors are displayed to the screen (good for development) or hidden, and
logged (good for production). For more information on this check out the Error Reporting¹ section.

Inline Error Suppression

You can also tell PHP to suppress specific errors with the Error Control Operator @. You put this operator at
the beginning of an expression, and any error that’s a direct result of the expression is silenced.

1 <?php

2 echo @$foo['bar'];

This will output $foo['bar'] if it exists, but will simply return a null and print nothing if the variable $foo
or 'bar' key does not exist. Without the error control operator, this expression could create a PHP Notice:

Undefined variable: foo or PHP Notice: Undefined index: bar error.

This might seem like a good idea, but there are a few undesirable tradeoffs. PHP handles expressions using
an @ in a less performant way than expressions without an @. Premature optimization may be the root of
all programming arguments, but if performance is particularly important for your application/library it’s
important to understand the error control operator’s performance implications.

Secondly, the error control operator completely swallows the error. The error is not displayed, and the error
is not sent to the error log. Also, stock/production PHP systems have no way to turn off the error control
operator. While you may be correct that the error you’re seeing is harmless, a different, less harmless error
will be just as silent.

If there’s a way to avoid the error suppression operator, you should consider it. For example, our code above
could be rewritten like this:

1 <?php

2 echo isset($foo['bar']) ? $foo['bar'] : '';

One instance where error suppression might make sense is where fopen() fails to find a file to load. You could
check for the existence of the file before you try to load it, but if the file is deleted after the check and before
the fopen() (which might sound impossible, but it can happen) then fopen() will return false and throw an

¹/#error_reporting

www.dbooks.org

https://www.dbooks.org/

Errors and Exceptions 39

error. This is potentially something PHP should resolve, but is one case where error suppression might seem
like the only valid solution.

Earlier we mentioned there’s no way in a stock PHP system to turn off the error control operator. However,
Xdebug² has an xdebug.scream ini setting which will disable the error control operator. You can set this via
your php.ini file with the following.

1 xdebug.scream = On

You can also set this value at runtime with the ini_set function

1 <?php

2 ini_set('xdebug.scream', '1')

The “Scream³” PHP extension offers similar functionality to Xdebug’s, although Scream’s ini setting is named
scream.enabled.

This is most useful when you’re debugging code and suspect an informative error is suppressed. Use scream
with care, and as a temporary debugging tool. There’s lots of PHP library code that may not work with the
error control operator disabled.

• Error Control Operators⁴
• SitePoint⁵
• Xdebug⁶
• Scream⁷

ErrorException

PHP is perfectly capable of being an “exception-heavy” programming language, and only requires a few lines
of code to make the switch. Basically you can throw your “errors” as “exceptions” using the ErrorException
class, which extends the Exception class.

This is a common practice implemented by a large number of modern frameworks such as Symfony and
Laravel. By default Laravel will display all errors as exceptions using the Whoops!⁸ package if the app.debug
switch is turned on, then hide them if the switch is turned off.

By throwing errors as exceptions in development you can handle them better than the usual result, and if you
see an exception during development you can wrap it in a catch statement with specific instructions on how
to handle the situation. Each exception you catch instantly makes your application that little bit more robust.

More information on this and details on how to use ErrorException with error handling can be found at
ErrorException Class⁹.

²http://xdebug.org/docs/basic
³http://php.net/book.scream
⁴http://php.net/language.operators.errorcontrol
⁵http://www.sitepoint.com/
⁶http://xdebug.org/docs/basic
⁷http://php.net/book.scream
⁸http://filp.github.io/whoops/
⁹http://php.net/class.errorexception

http://xdebug.org/docs/basic
http://php.net/book.scream
http://php.net/language.operators.errorcontrol
http://www.sitepoint.com/
http://xdebug.org/docs/basic
http://php.net/book.scream
http://filp.github.io/whoops/
http://php.net/class.errorexception
http://xdebug.org/docs/basic
http://php.net/book.scream
http://php.net/language.operators.errorcontrol
http://www.sitepoint.com/
http://xdebug.org/docs/basic
http://php.net/book.scream
http://filp.github.io/whoops/
http://php.net/class.errorexception

Errors and Exceptions 40

• Error Control Operators¹⁰
• Predefined Constants for Error Handling¹¹
• error_reporting()¹²
• Reporting¹³

9.2 Exceptions

Exceptions are a standard part of most popular programming languages, but they are often overlooked by
PHP programmers. Languages like Ruby are extremely Exception heavy, so whenever something goes wrong
such as a HTTP request failing, or a DB query goes wrong, or even if an image asset could not be found, Ruby
(or the gems being used) will throw an exception to the screen meaning you instantly know there is a mistake.

PHP itself is fairly lax with this, and a call to file_get_contents() will usually just get you a FALSE and
a warning. Many older PHP frameworks like CodeIgniter will just return a false, log a message to their
proprietary logs and maybe let you use a method like $this->upload->get_error() to see what went wrong.
The problem here is that you have to go looking for a mistake and check the docs to see what the error method
is for this class, instead of having it made extremely obvious.

Another problem is when classes automatically throw an error to the screen and exit the process. When you
do this you stop another developer from being able to dynamically handle that error. Exceptions should be
thrown to make a developer aware of an error; they then can choose how to handle this. E.g.:

1 <?php

2 $email = new Fuel\Email;

3 $email->subject('My Subject');

4 $email->body('How the heck are you?');

5 $email->to('guy@example.com', 'Some Guy');

6

7 try

8 {

9 $email->send();

10 }

11 catch(Fuel\Email\ValidationFailedException $e)

12 {

13 // The validation failed

14 }

15 catch(Fuel\Email\SendingFailedException $e)

16 {

17 // The driver could not send the email

18 }

19 finally

20 {

¹⁰http://php.net/language.operators.errorcontrol
¹¹http://php.net/errorfunc.constants
¹²http://php.net/function.error-reporting
¹³/#error_reporting

www.dbooks.org

http://php.net/language.operators.errorcontrol
http://php.net/errorfunc.constants
http://php.net/function.error-reporting
http://php.net/language.operators.errorcontrol
http://php.net/errorfunc.constants
http://php.net/function.error-reporting
https://www.dbooks.org/

Errors and Exceptions 41

21 // Executed regardless of whether an exception has been thrown, and before normal exec\

22 ution resumes

23 }

SPL Exceptions

The generic Exception class provides very little debugging context for the developer; however, to remedy
this, it is possible to create a specialized Exception type by sub-classing the generic Exception class:

1 <?php

2 class ValidationException extends Exception {}

This means you can add multiple catch blocks and handle different Exceptions differently. This can lead to
the creation of a lot of custom Exceptions, some of which could have been avoided using the SPL
Exceptions provided in the SPL extension¹⁴.

If for example you use the __call() Magic Method and an invalid method is requested then instead of
throwing a standard Exception which is vague, or creating a custom Exception just for that, you could just
throw new BadMethodCallException;.

• Read about Exceptions¹⁵
• Read about SPL Exceptions¹⁶
• Nesting Exceptions In PHP¹⁷
• Exception Best Practices in PHP 5.3¹⁸

¹⁴/#standard_php_library
¹⁵http://php.net/language.exceptions
¹⁶http://php.net/spl.exceptions
¹⁷http://www.brandonsavage.net/exceptional-php-nesting-exceptions-in-php/
¹⁸http://ralphschindler.com/2010/09/15/exception-best-practices-in-php-5-3

http://php.net/language.exceptions
http://php.net/spl.exceptions
http://www.brandonsavage.net/exceptional-php-nesting-exceptions-in-php/
http://ralphschindler.com/2010/09/15/exception-best-practices-in-php-5-3
http://php.net/language.exceptions
http://php.net/spl.exceptions
http://www.brandonsavage.net/exceptional-php-nesting-exceptions-in-php/
http://ralphschindler.com/2010/09/15/exception-best-practices-in-php-5-3

10. Security

10.1 Web Application Security

There are bad people ready and willing to exploit your web application. It is important that you take necessary
precautions to harden your web application’s security. Luckily, the fine folks at The Open Web Application
Security Project¹ (OWASP) have compiled a comprehensive list of known security issues and methods to
protect yourself against them. This is a must read for the security-conscious developer. Survive The Deep
End: PHP Security² by Padraic Brady is also another good web application security guide for PHP.

• Read the OWASP Security Guide³

10.2 Password Hashing

Eventually everyone builds a PHP application that relies on user login. Usernames and passwords are stored
in a database and later used to authenticate users upon login.

It is important that you properly hash⁴ passwords before storing them. Password hashing is an irreversible,
one-way function performed against the user’s password. This produces a fixed-length string that cannot be
feasibly reversed. This means you can compare a hash against another to determine if they both came from
the same source string, but you cannot determine the original string. If passwords are not hashed and your
database is accessed by an unauthorized third-party, all user accounts are now compromised.

Passwords should also be individually salted⁵ by adding a random string to each password before hashing.
This prevents dictionary attacks and the use of “rainbow tables” (a reverse list of crytographic hashes for
common passwords.)

Hashing and salting are vital as often users use the same password for multiple services and password quality
can be poor.

Fortunately, nowadays PHP makes this easy.

Hashing passwords with password_hash

In PHP 5.5 password_hash()was introduced. At this time it is using BCrypt, the strongest algorithm currently
supported by PHP. It will be updated in the future to support more algorithms as needed though. The
password_compat library was created to provide forward compatibility for PHP >= 5.3.7.

Below we hash a string, and then check the hash against a new string. Because our two source strings are
different (‘secret-password’ vs. ‘bad-password’) this login will fail.

¹http://php.net/book.filter
²http://php.net/filter.filters.validate
³http://php.net/filter.filters.sanitize
⁴http://php.net/filter.filters.validate
⁵http://php.net/function.filter-input

www.dbooks.org

http://php.net/book.filter
http://php.net/book.filter
http://php.net/filter.filters.validate
http://php.net/filter.filters.validate
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/function.filter-input
http://php.net/book.filter
http://php.net/filter.filters.validate
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/function.filter-input
https://www.dbooks.org/

Security 43

1 <?php

2 require 'password.php';

3

4 $passwordHash = password_hash('secret-password', PASSWORD_DEFAULT);

5

6 if (password_verify('bad-password', $passwordHash)) {

7 // Correct Password

8 } else {

9 // Wrong password

10 }

password_hash() takes care of password salting for you. The salt is stored, along with the algorithm and
“cost”, as part of the hash. password_verify() extracts this to determine how to check the password, so you
don’t need a separate database field to store your salts.

• Learn about password_hash()⁶
• password_compat for PHP >= 5.3.7 && < 5.5⁷
• Learn about hashing in regards to cryptography⁸
• Learn about salts⁹
• PHP password_hash() RFC¹⁰

10.3 Data Filtering

Never ever (ever) trust foreign input introduced to your PHP code. Always sanitize and validate foreign input
before using it in code. The filter_var() and filter_input() functions can sanitize text and validate text
formats (e.g. email addresses).

Foreign input can be anything: $_GET and $_POST form input data, some values in the $_SERVER superglobal,
and the HTTP request body via fopen('php://input', 'r'). Remember, foreign input is not limited to form
data submitted by the user. Uploaded and downloaded files, session values, cookie data, and data from third-
party web services are foreign input, too.

While foreign data can be stored, combined, and accessed later, it is still foreign input. Every time you process,
output, concatenate, or include data in your code, ask yourself if the data is filtered properly and can it be
trusted.

Data may be filtered differently based on its purpose. For example, when unfiltered foreign input is passed into
HTML page output, it can execute HTML and JavaScript on your site! This is known as Cross-Site Scripting
(XSS) and can be a very dangerous attack. One way to avoid XSS is to sanitize all user-generated data before
outputting it to your page by removing HTML tags with the strip_tags() function or escaping characters

⁶http://php.net/book.filter
⁷http://php.net/filter.filters.sanitize
⁸http://php.net/filter.filters.validate
⁹http://php.net/function.filter-input
¹⁰http://php.net/function.filter-var

http://php.net/book.filter
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/function.filter-input
http://php.net/function.filter-var
http://php.net/book.filter
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/function.filter-input
http://php.net/function.filter-var

Security 44

with special meaning into their respective HTML entities with the htmlentities() or htmlspecialchars()
functions.

Another example is passing options to be executed on the command line. This can be extremely dangerous
(and is usually a bad idea), but you can use the built-in escapeshellarg() function to sanitize the executed
command’s arguments.

One last example is accepting foreign input to determine a file to load from the filesystem. This can be
exploited by changing the filename to a file path. You need to remove "/", "../", null bytes¹¹, or other
characters from the file path so it can’t load hidden, non-public, or sensitive files.

• Learn about data filtering¹²
• Learn about filter_var¹³
• Learn about filter_input¹⁴
• Learn about handling null bytes¹⁵

Sanitization

Sanitization removes (or escapes) illegal or unsafe characters from foreign input.

For example, you should sanitize foreign input before including the input in HTML or inserting it into a raw
SQL query. When you use bound parameters with PDO, it will sanitize the input for you.

Sometimes it is required to allow some safe HTML tags in the input when including it in the HTML page. This
is very hard to do and many avoid it by using other more restricted formatting like Markdown or BBCode,
although whitelisting libraries like HTML Purifier¹⁶ exists for this reason.

See Sanitization Filters¹⁷

Unserialization

It is dangerous to unserialize() data from users or other untrusted sources. Doing so can allow malicious
users to instantiate objects (with user-defined properties) whose destructors will be executed, even if the
objects themselves aren’t used. You should therefore avoid unserializing untrusted data.

If you absolutely must unserialize data from untrusted sources, use PHP 7’s allowed_classes¹⁸ option to
restrict which object types are allowed to be unserialized.

¹¹http://php.net/security.filesystem.nullbytes
¹²http://php.net/book.filter
¹³http://php.net/function.filter-var
¹⁴http://php.net/function.filter-input
¹⁵http://php.net/security.filesystem.nullbytes
¹⁶http://htmlpurifier.org/
¹⁷http://php.net/filter.filters.sanitize
¹⁸https://secure.php.net/manual/en/function.unserialize.php

www.dbooks.org

http://php.net/security.filesystem.nullbytes
http://php.net/book.filter
http://php.net/function.filter-var
http://php.net/function.filter-input
http://php.net/security.filesystem.nullbytes
http://htmlpurifier.org/
http://php.net/filter.filters.sanitize
https://secure.php.net/manual/en/function.unserialize.php
http://php.net/security.filesystem.nullbytes
http://php.net/book.filter
http://php.net/function.filter-var
http://php.net/function.filter-input
http://php.net/security.filesystem.nullbytes
http://htmlpurifier.org/
http://php.net/filter.filters.sanitize
https://secure.php.net/manual/en/function.unserialize.php
https://www.dbooks.org/

Security 45

Validation

Validation ensures that foreign input is what you expect. For example, you may want to validate an email
address, a phone number, or age when processing a registration submission.

See Validation Filters¹⁹

10.4 Configuration Files

When creating configuration files for your applications, best practices recommend that one of the following
methods be followed:

• It is recommended that you store your configuration information where it cannot be accessed directly
and pulled in via the file system.

• If you must store your configuration files in the document root, name the files with a .php extension.
This ensures that, even if the script is accessed directly, it will not be output as plain text.

• Information in configuration files should be protected accordingly, either through encryption or
group/user file system permissions.

• It is a good idea to ensure that you do not commit configuration files containing sensitive information
e.g. passwords or API tokens to source control.

10.5 Register Globals

NOTE: As of PHP 5.4.0 the register_globals setting has been removed and can no longer be used. This is
only included as a warning for anyone in the process of upgrading a legacy application.

When enabled, the register_globals configuration setting that makes several types of variables (including
ones from $_POST, $_GET and $_REQUEST) available in the global scope of your application. This can easily
lead to security issues as your application cannot effectively tell where the data is coming from.

For example: $_GET['foo'] would be available via $foo, which can override variables that have not been
declared. If you are using PHP < 5.4.0 make sure that register_globals is off.

• Register_globals in the PHP manual²⁰

10.6 Error Reporting

Error logging can be useful in finding the problem spots in your application, but it can also expose information
about the structure of your application to the outside world. To effectively protect your application from
issues that could be caused by the output of these messages, you need to configure your server differently in
development versus production (live).

Development

To show every possible error during development, configure the following settings in your php.ini:

¹⁹http://php.net/filter.filters.validate
²⁰http://php.net/security.globals

http://php.net/filter.filters.validate
http://php.net/security.globals
http://php.net/filter.filters.validate
http://php.net/security.globals

Security 46

1 display_errors = On

2 display_startup_errors = On

3 error_reporting = -1

4 log_errors = On

Passing in the value -1 will show every possible error, even when new levels and constants are
added in future PHP versions. The E_ALL constant also behaves this way as of PHP 5.4. - php.net²¹

The E_STRICT error level constant was introduced in 5.3.0 and is not part of E_ALL, however it became part
of E_ALL in 5.4.0. What does this mean? In terms of reporting every possible error in version 5.3 it means you
must use either -1 or E_ALL | E_STRICT.

Reporting every possible error by PHP version

• < 5.3 -1 or E_ALL
• 5.3 -1 or E_ALL | E_STRICT

• > 5.3 -1 or E_ALL

Production

To hide errors on your production environment, configure your php.ini as:

1 display_errors = Off

2 display_startup_errors = Off

3 error_reporting = E_ALL

4 log_errors = On

With these settings in production, errors will still be logged to the error logs for the web server, but will not
be shown to the user. For more information on these settings, see the PHP manual:

• error_reporting²²
• display_errors²³
• display_startup_errors²⁴
• log_errors²⁵

²¹http://php.net/function.error-reporting
²²http://php.net/errorfunc.configuration#ini.error-reporting
²³http://php.net/errorfunc.configuration#ini.display-errors
²⁴http://php.net/errorfunc.configuration#ini.display-startup-errors
²⁵http://php.net/errorfunc.configuration#ini.log-errors

www.dbooks.org

http://php.net/function.error-reporting
http://php.net/errorfunc.configuration#ini.error-reporting
http://php.net/errorfunc.configuration#ini.display-errors
http://php.net/errorfunc.configuration#ini.display-startup-errors
http://php.net/errorfunc.configuration#ini.log-errors
http://php.net/function.error-reporting
http://php.net/errorfunc.configuration#ini.error-reporting
http://php.net/errorfunc.configuration#ini.display-errors
http://php.net/errorfunc.configuration#ini.display-startup-errors
http://php.net/errorfunc.configuration#ini.log-errors
https://www.dbooks.org/

11. Testing
Writing automated tests for your PHP code is considered a best practice and can lead to well-built applications.
Automated tests are a great tool formaking sure your application does not breakwhen you aremaking changes
or adding new functionality and should not be ignored.

There are several different types of testing tools (or frameworks) available for PHP, which use different
approaches - all of which are trying to avoid manual testing and the need for large Quality Assurance teams,
just to make sure recent changes didn’t break existing functionality.

11.1 Test Driven Development

From Wikipedia¹:

Test-driven development (TDD) is a software development process that relies on the repetition
of a very short development cycle: first the developer writes a failing automated test case that
defines a desired improvement or new function, then produces code to pass that test and finally
refactors the new code to acceptable standards. Kent Beck, who is credited with having developed
or ‘rediscovered’ the technique, stated in 2003 that TDD encourages simple designs and inspires
confidence.

There are several different types of testing that you can do for your application:

Unit Testing

Unit Testing is a programming approach to ensure functions, classes and methods are working as expected,
from the point you build them all the way through the development cycle. By checking values going in and
out of various functions and methods, you can make sure the internal logic is working correctly. By using
Dependency Injection and building “mock” classes and stubs you can verify that dependencies are correctly
used for even better test coverage.

When you create a class or function you should create a unit test for each behavior it must have. At a very
basic level you should make sure it errors if you send it bad arguments and make sure it works if you send
it valid arguments. This will help ensure that when you make changes to this class or function later on in
the development cycle that the old functionality continues to work as expected. The only alternative to this
would be var_dump() in a test.php, which is no way to build an application - large or small.

The other use for unit tests is contributing to open source. If you can write a test that shows broken
functionality (i.e. fails), then fix it, and show the test passing, patches are much more likely to be accepted. If
you run a project which accepts pull requests then you should suggest this as a requirement.

¹http://en.wikipedia.org/wiki/Test-driven_development

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

Testing 48

PHPUnit² is the de-facto testing framework for writing unit tests for PHP applications, but there are several
alternatives

• atoum³
• Kahlan⁴
• Peridot⁵
• SimpleTest⁶

Integration Testing

From Wikipedia⁷:

Integration testing (sometimes called Integration and Testing, abbreviated “I&T”) is the phase
in software testing in which individual software modules are combined and tested as a group.
It occurs after unit testing and before validation testing. Integration testing takes as its input
modules that have been unit tested, groups them in larger aggregates, applies tests defined in an
integration test plan to those aggregates, and delivers as its output the integrated system ready
for system testing.

Many of the same tools that can be used for unit testing can be used for integration testing as many of the
same principles are used.

Functional Testing

Sometimes also known as acceptance testing, functional testing consists of using tools to create automated
tests that actually use your application instead of just verifying that individual units of code are behaving
correctly and that individual units can speak to each other correctly. These tools typically work using real
data and simulating actual users of the application.

Functional Testing Tools

• Selenium⁸
• Mink⁹
• Codeception¹⁰ is a full-stack testing framework that includes acceptance testing tools
• Storyplayer¹¹ is a full-stack testing framework that includes support for creating and destroying test
environments on demand

²http://phpunit.de
³https://github.com/atoum/atoum
⁴https://github.com/crysalead/kahlan
⁵http://peridot-php.github.io/
⁶http://simpletest.org
⁷http://en.wikipedia.org/wiki/Integration_testing
⁸http://seleniumhq.com
⁹http://mink.behat.org
¹⁰http://codeception.com
¹¹http://datasift.github.io/storyplayer

www.dbooks.org

http://phpunit.de/
https://github.com/atoum/atoum
https://github.com/crysalead/kahlan
http://peridot-php.github.io/
http://simpletest.org/
http://en.wikipedia.org/wiki/Integration_testing
http://seleniumhq.com/
http://mink.behat.org/
http://codeception.com/
http://datasift.github.io/storyplayer
http://phpunit.de/
https://github.com/atoum/atoum
https://github.com/crysalead/kahlan
http://peridot-php.github.io/
http://simpletest.org/
http://en.wikipedia.org/wiki/Integration_testing
http://seleniumhq.com/
http://mink.behat.org/
http://codeception.com/
http://datasift.github.io/storyplayer
https://www.dbooks.org/

Testing 49

11.2 Behavior Driven Development

There are two different types of Behavior-Driven Development (BDD): SpecBDD and StoryBDD. SpecBDD
focuses on technical behavior of code, while StoryBDD focuses on business or feature behaviors or interac-
tions. PHP has frameworks for both types of BDD.

With StoryBDD, you write human-readable stories that describe the behavior of your application. These
stories can then be run as actual tests against your application. The framework used in PHP applications for
StoryBDD is Behat¹², which is inspired by Ruby’s Cucumber¹³ project and implements the Gherkin DSL for
describing feature behavior.

With SpecBDD, youwrite specifications that describe how your actual code should behave. Instead of testing a
function or method, you are describing how that function or method should behave. PHP offers the PHPSpec¹⁴
framework for this purpose. This framework is inspired by the RSpec project¹⁵ for Ruby.

BDD Links

• Behat¹⁶, the StoryBDD framework for PHP, inspired by Ruby’s Cucumber¹⁷ project;
• PHPSpec¹⁸, the SpecBDD framework for PHP, inspired by Ruby’s RSpec¹⁹ project;
• Codeception²⁰ is a full-stack testing framework that uses BDD principles.

11.3 Complementary Testing Tools

Besides individual testing and behavior driven frameworks, there are also a number of generic frameworks
and helper libraries useful for any preferred approach taken.

Tool Links

• Selenium²¹ is a browser automation tool which can be integrated with PHPUnit²²
• Mockery²³ is a Mock Object Framework which can be integrated with PHPUnit²⁴ or PHPSpec²⁵
• Prophecy²⁶ is a highly opinionated yet very powerful and flexible PHP object mocking framework. It’s
integrated with PHPSpec²⁷ and can be used with PHPUnit²⁸.

¹²http://behat.org/
¹³http://cukes.info/
¹⁴http://www.phpspec.net/
¹⁵http://rspec.info/
¹⁶http://behat.org/
¹⁷http://cukes.info/
¹⁸http://www.phpspec.net/
¹⁹http://rspec.info/
²⁰http://codeception.com/
²¹http://seleniumhq.org/
²²https://github.com/giorgiosironi/phpunit-selenium/
²³https://github.com/padraic/mockery
²⁴http://phpunit.de/
²⁵http://www.phpspec.net/
²⁶https://github.com/phpspec/prophecy
²⁷http://www.phpspec.net/
²⁸http://phpunit.de/

http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://codeception.com/
http://seleniumhq.org/
https://github.com/giorgiosironi/phpunit-selenium/
https://github.com/padraic/mockery
http://phpunit.de/
http://www.phpspec.net/
https://github.com/phpspec/prophecy
http://www.phpspec.net/
http://phpunit.de/
http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://codeception.com/
http://seleniumhq.org/
https://github.com/giorgiosironi/phpunit-selenium/
https://github.com/padraic/mockery
http://phpunit.de/
http://www.phpspec.net/
https://github.com/phpspec/prophecy
http://www.phpspec.net/
http://phpunit.de/

12. Servers and Deployment
PHP applications can be deployed and run on production web servers in a number of ways.

12.1 Platform as a Service (PaaS)

PaaS provides the system and network architecture necessary to run PHP applications on the web. This means
little to no configuration for launching PHP applications or PHP frameworks.

Recently PaaS has become a popular method for deploying, hosting, and scaling PHP applications of all sizes.
You can find a list of PHP PaaS “Platform as a Service” providers in our resources section.

12.2 Virtual or Dedicated Servers

If you are comfortable with systems administration, or are interested in learning it, virtual or dedicated servers
give you complete control of your application’s production environment.

nginx and PHP-FPM

PHP, via PHP’s built-in FastCGI Process Manager (FPM), pairs really nicely with nginx¹, which is a
lightweight, high-performance web server. It uses less memory than Apache and can better handle more
concurrent requests. This is especially important on virtual servers that don’t have much memory to spare.

• Read more on nginx²
• Read more on PHP-FPM³
• Read more on setting up nginx and PHP-FPM securely⁴

Apache and PHP

PHP and Apache have a long history together. Apache is wildly configurable and has many availablemodules⁵
to extend functionality. It is a popular choice for shared servers and an easy setup for PHP frameworks and
open source apps likeWordPress. Unfortunately, Apache usesmore resources than nginx by default and cannot
handle as many visitors at the same time.

Apache has several possible configurations for running PHP. The most common and easiest to setup is the
prefork MPM⁶ with mod_php5. While it isn’t the most memory efficient, it is the simplest to get working and

¹http://nginx.org/
²http://nginx.org/
³http://php.net/install.fpm
⁴https://nealpoole.com/blog/2011/04/setting-up-php-fastcgi-and-nginx-dont-trust-the-tutorials-check-your-configuration/
⁵http://httpd.apache.org/docs/2.4/mod/
⁶http://httpd.apache.org/docs/2.4/mod/prefork.html

www.dbooks.org

http://nginx.org/
http://nginx.org/
http://php.net/install.fpm
https://nealpoole.com/blog/2011/04/setting-up-php-fastcgi-and-nginx-dont-trust-the-tutorials-check-your-configuration/
http://httpd.apache.org/docs/2.4/mod/
http://httpd.apache.org/docs/2.4/mod/prefork.html
http://nginx.org/
http://nginx.org/
http://php.net/install.fpm
https://nealpoole.com/blog/2011/04/setting-up-php-fastcgi-and-nginx-dont-trust-the-tutorials-check-your-configuration/
http://httpd.apache.org/docs/2.4/mod/
http://httpd.apache.org/docs/2.4/mod/prefork.html
https://www.dbooks.org/

Servers and Deployment 51

to use. This is probably the best choice if you don’t want to dig too deeply into the server administration
aspects. Note that if you use mod_php5 you MUST use the prefork MPM.

Alternatively, if you want to squeeze more performance and stability out of Apache then you can take
advantage of the same FPM system as nginx and run the worker MPM⁷ or event MPM⁸ with mod_fastcgi
or mod_fcgid. This configuration will be significantly more memory efficient and much faster but it is more
work to set up.

If you are running Apache 2.4 or later, you can use mod_proxy_fcgi⁹ to get great performance that is easy to
setup.

• Read more on Apache¹⁰
• Read more on Multi-Processing Modules¹¹
• Read more on mod_fastcgi¹²
• Read more on mod_fcgid¹³
• Read more on mod_proxy_fcgi¹⁴
• Read more on setting up Apache and PHP-FPM with mod_proxy_fcgi¹⁵

12.3 Shared Servers

PHP has shared servers to thank for its popularity. It is hard to find a host without PHP installed, but be sure
it’s the latest version. Shared servers allow you and other developers to deploy websites to a single machine.
The upside to this is that it has become a cheap commodity. The downside is that you never know what kind
of a ruckus your neighboring tenants are going to create; loading down the server or opening up security
holes are the main concerns. If your project’s budget can afford to avoid shared servers, you should.

To make sure your shared servers are offering the latest versions of PHP, check out PHP Versions¹⁶.

12.4 Building and Deploying your Application

If you find yourself doing manual database schema changes or running your tests manually before updating
your files (manually), think twice! With every additional manual task needed to deploy a new version of
your app, the chances for potentially fatal mistakes increase. Whether you’re dealing with a simple update, a
comprehensive build process or even a continuous integration strategy, build automation¹⁷ is your friend.

Among the tasks you might want to automate are:

⁷http://httpd.apache.org/docs/2.4/mod/worker.html
⁸http://httpd.apache.org/docs/2.4/mod/event.html
⁹https://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html
¹⁰http://httpd.apache.org/
¹¹http://httpd.apache.org/docs/2.4/mod/mpm_common.html
¹²https://blogs.oracle.com/opal/entry/php_fpm_fastcgi_process_manager
¹³http://httpd.apache.org/mod_fcgid/
¹⁴https://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html
¹⁵https://serversforhackers.com/video/apache-and-php-fpm
¹⁶http://phpversions.info/shared-hosting/
¹⁷http://en.wikipedia.org/wiki/Build_automation

http://httpd.apache.org/docs/2.4/mod/worker.html
http://httpd.apache.org/docs/2.4/mod/event.html
https://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html
http://httpd.apache.org/
http://httpd.apache.org/docs/2.4/mod/mpm_common.html
https://blogs.oracle.com/opal/entry/php_fpm_fastcgi_process_manager
http://httpd.apache.org/mod_fcgid/
https://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html
https://serversforhackers.com/video/apache-and-php-fpm
http://phpversions.info/shared-hosting/
http://en.wikipedia.org/wiki/Build_automation
http://httpd.apache.org/docs/2.4/mod/worker.html
http://httpd.apache.org/docs/2.4/mod/event.html
https://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html
http://httpd.apache.org/
http://httpd.apache.org/docs/2.4/mod/mpm_common.html
https://blogs.oracle.com/opal/entry/php_fpm_fastcgi_process_manager
http://httpd.apache.org/mod_fcgid/
https://httpd.apache.org/docs/current/mod/mod_proxy_fcgi.html
https://serversforhackers.com/video/apache-and-php-fpm
http://phpversions.info/shared-hosting/
http://en.wikipedia.org/wiki/Build_automation

Servers and Deployment 52

• Dependency management
• Compilation, minification of your assets
• Running tests
• Creation of documentation
• Packaging
• Deployment

Deployment Tools

Deployment tools can be described as a collection of scripts that handle common tasks of software deployment.
The deployment tool is not a part of your software, it acts on your software from ‘outside’.

There are many open source tools available to help you with build automation and deployment, some are
written in PHP others aren’t. This shouldn’t hold you back from using them, if they’re better suited for the
specific job. Here are a few examples:

Phing¹⁸ can control your packaging, deployment or testing process fromwithin a XML build file. Phing (which
is based on Apache Ant¹⁹) provides a rich set of tasks usually needed to install or update a web application
and can be extended with additional custom tasks, written in PHP. It’s a solid and robust tool and has been
around for a long time, however the tool could be perceived as a bit old fashioned because of the way it deals
with configuration (XML files).

Capistrano²⁰ is a system for intermediate-to-advanced programmers to execute commands in a structured,
repeatable way on one or more remotemachines. It is pre-configured for deploying Ruby on Rails applications,
however you can successfully deploying PHP systems with it. Successful use of Capistrano depends on a
working knowledge of Ruby and Rake. Dave Gardner’s blog post PHP Deployment with Capistrano²¹ is a
good starting point for PHP developers interested in Capistrano.

Rocketeer²² gets its inspiration and philosophy from the Laravel framework. Its goal is to be fast, elegant and
ease to use with smart defaults. It features multiple servers, multiple stages, atomic deploys and deployment
can be performed in parallel. Everything in the tool can be hot swapped or extended, and everything is written
in PHP.

Deployer²³ is a deployment tool written in PHP, it’s simple and functional. Runs tasks in parallel, atomic
deployment, keeps consistency between servers. Recipes of common tasks for Symfony, Laravel, Zend
Framework and Yii. Younes Rafie’s article Easy Deployment of PHP Applications with Deployer²⁴ is a great
tutorial for deploying your application with the tool.

Magallanes²⁵ another tool written in PHP with simple configuration done in YAML files. It has support for
multiple servers and environments, atomic deployment, and have some built in tasks that you can leverage
for common tools and frameworks.

¹⁸http://www.phing.info/
¹⁹http://ant.apache.org/
²⁰https://github.com/capistrano/capistrano/wiki
²¹http://www.davegardner.me.uk/blog/2012/02/13/php-deployment-with-capistrano/
²²http://rocketeer.autopergamene.eu/
²³http://deployer.org/
²⁴http://www.sitepoint.com/deploying-php-applications-with-deployer/
²⁵http://magephp.com/

www.dbooks.org

http://www.phing.info/
http://ant.apache.org/
https://github.com/capistrano/capistrano/wiki
http://www.davegardner.me.uk/blog/2012/02/13/php-deployment-with-capistrano/
http://rocketeer.autopergamene.eu/
http://deployer.org/
http://www.sitepoint.com/deploying-php-applications-with-deployer/
http://magephp.com/
http://www.phing.info/
http://ant.apache.org/
https://github.com/capistrano/capistrano/wiki
http://www.davegardner.me.uk/blog/2012/02/13/php-deployment-with-capistrano/
http://rocketeer.autopergamene.eu/
http://deployer.org/
http://www.sitepoint.com/deploying-php-applications-with-deployer/
http://magephp.com/
https://www.dbooks.org/

Servers and Deployment 53

Further reading:

• Automate your project with Apache Ant²⁶
• Expert PHP Deployments²⁷ - free book on deployment with Capistrano, Phing and Vagrant.
• Deploying PHP Applications²⁸ - paid book on best practices and tools for PHP deployment.

Server Provisioning

Managing and configuring servers can be a daunting task when faced with many servers. There are tools
for dealing with this so you can automate your infrastructure to make sure you have the right servers and
that they’re configured properly. They often integrate with the larger cloud hosting providers (Amazon Web
Services, Heroku, DigitalOcean, etc) for managing instances, which makes scaling an application a lot easier.

Ansible²⁹ is a tool that manages your infrastructure through YAML files. It’s simple to get started with and
can manage complex and large scale applications. There is an API for managing cloud instances and it can
manage them through a dynamic inventory using certain tools.

Puppet³⁰ is a tool that has its own language and file types for managing servers and configurations. It can be
used in a master/client setup or it can be used in a “master-less” mode. In the master/client mode the clients
will poll the central master(s) for new configuration on set intervals and update itself if necessary. In the
master-less mode you can push changes to your nodes.

Chef³¹ is a powerful Ruby based system integration framework that you can build your whole server
environment or virtual boxes with. It integrates well with Amazon Web Services through their service called
OpsWorks.

Further reading:

• An Ansible Tutorial³²
• Ansible for DevOps³³ - paid book on everything Ansible
• Ansible for AWS³⁴ - paid book on integrating Ansible and Amazon Web Services
• Three part blog series about deploying a LAMP application with Chef, Vagrant, and EC2³⁵
• Chef Cookbook which installs and configures PHP and the PEAR package management system³⁶
• Chef video tutorial series³⁷

²⁶http://net.tutsplus.com/tutorials/other/automate-your-projects-with-apache-ant/
²⁷http://viccherubini.com/assets/Expert-PHP-Deployments.pdf
²⁸http://www.deployingphpapplications.com
²⁹https://www.ansible.com/
³⁰https://puppet.com/
³¹https://www.chef.io/
³²https://serversforhackers.com/an-ansible-tutorial
³³https://leanpub.com/ansible-for-devops
³⁴https://leanpub.com/ansible-for-aws
³⁵http://www.jasongrimes.org/2012/06/managing-lamp-environments-with-chef-vagrant-and-ec2-1-of-3/
³⁶https://github.com/chef-cookbooks/php
³⁷https://www.youtube.com/playlist?list=PL11cZfNdwNyPnZA9D1MbVqldGuOWqbumZ

http://net.tutsplus.com/tutorials/other/automate-your-projects-with-apache-ant/
http://viccherubini.com/assets/Expert-PHP-Deployments.pdf
http://www.deployingphpapplications.com/
https://www.ansible.com/
https://puppet.com/
https://www.chef.io/
https://serversforhackers.com/an-ansible-tutorial
https://leanpub.com/ansible-for-devops
https://leanpub.com/ansible-for-aws
http://www.jasongrimes.org/2012/06/managing-lamp-environments-with-chef-vagrant-and-ec2-1-of-3/
https://github.com/chef-cookbooks/php
https://www.youtube.com/playlist?list=PL11cZfNdwNyPnZA9D1MbVqldGuOWqbumZ
http://net.tutsplus.com/tutorials/other/automate-your-projects-with-apache-ant/
http://viccherubini.com/assets/Expert-PHP-Deployments.pdf
http://www.deployingphpapplications.com/
https://www.ansible.com/
https://puppet.com/
https://www.chef.io/
https://serversforhackers.com/an-ansible-tutorial
https://leanpub.com/ansible-for-devops
https://leanpub.com/ansible-for-aws
http://www.jasongrimes.org/2012/06/managing-lamp-environments-with-chef-vagrant-and-ec2-1-of-3/
https://github.com/chef-cookbooks/php
https://www.youtube.com/playlist?list=PL11cZfNdwNyPnZA9D1MbVqldGuOWqbumZ

Servers and Deployment 54

Continuous Integration

Continuous Integration is a software development practice where members of a team integrate
their work frequently, usually each person integrates at least daily â€” leading to multiple inte-
grations per day. Many teams find that this approach leads to significantly reduced integration
problems and allows a team to develop cohesive software more rapidly.

– Martin Fowler

There are different ways to implement continuous integration for PHP. Travis CI³⁸ has done a great job of
making continuous integration a reality even for small projects. Travis CI is a hosted continuous integration
service for the open source community. It is integrated with GitHub and offers first class support for many
languages including PHP.

Further reading:

• Continuous Integration with Jenkins³⁹
• Continuous Integration with PHPCI⁴⁰
• Continuous Integration with Teamcity⁴¹

³⁸https://travis-ci.org/
³⁹http://jenkins-ci.org/
⁴⁰http://www.phptesting.org/
⁴¹http://www.jetbrains.com/teamcity/

www.dbooks.org

https://travis-ci.org/
http://jenkins-ci.org/
http://www.phptesting.org/
http://www.jetbrains.com/teamcity/
https://travis-ci.org/
http://jenkins-ci.org/
http://www.phptesting.org/
http://www.jetbrains.com/teamcity/
https://www.dbooks.org/

13. Virtualization
Running your application on different environments in development and production can lead to strange bugs
popping up when you go live. It’s also tricky to keep different development environments up to date with the
same version for all libraries used when working with a team of developers.

If you are developing on Windows and deploying to Linux (or anything non-Windows) or are developing
in a team, you should consider using a virtual machine. This sounds tricky, but besides the widely known
virtualization environments like VMware or VirtualBox, there are additional tools that may help you setting
up a virtual environment in a few easy steps.

13.1 Vagrant

Vagrant¹ helps you build your virtual boxes on top of the known virtual environments and will configure
these environments based on a single configuration file. These boxes can be set up manually, or you can use
“provisioning” software such as Puppet² or Chef³ to do this for you. Provisioning the base box is a great way
to ensure that multiple boxes are set up in an identical fashion and removes the need for you to maintain
complicated “set up” command lists. You can also “destroy” your base box and recreate it without many
manual steps, making it easy to create a “fresh” installation.

Vagrant creates folders for sharing your code between your host and your virtual machine, which means that
you can create and edit your files on your host machine and then run the code inside your virtual machine.

A little help

If you need a little help to start using Vagrant there are some services that might be useful:

• Rove⁴: service that allows you to pre-generate typical Vagrant builds, PHP among the options. The
provisioning is made with Chef.

• Puphpet⁵: simple GUI to set up virtual machines for PHP development. Heavily focused in PHP.
Besides local VMs, it can be used to deploy to cloud services as well. The provisioning is made with
Puppet.

• Protobox⁶: is a layer on top of vagrant and a web GUI to setup virtual machines for web development.
A single YAML document controls everything that is installed on the virtual machine.

• Phansible⁷: provides an easy to use interface that helps you generate Ansible Playbooks for PHP based
projects.

¹http://vagrantup.com/
²http://www.puppetlabs.com/
³https://www.chef.io/
⁴http://rove.io/
⁵https://puphpet.com/
⁶http://getprotobox.com/
⁷http://phansible.com/

http://vagrantup.com/
http://www.puppetlabs.com/
https://www.chef.io/
http://rove.io/
https://puphpet.com/
http://getprotobox.com/
http://phansible.com/
http://vagrantup.com/
http://www.puppetlabs.com/
https://www.chef.io/
http://rove.io/
https://puphpet.com/
http://getprotobox.com/
http://phansible.com/

Virtualization 56

13.2 Docker

Docker⁸ - a lightweight alternative to a full virtual machine - is so called because it’s all about “containers”.
A container is a building block which, in the simplest case, does one specific job, e.g. running a web server.
An “image” is the package you use to build the container - Docker has a repository full of them.

A typical LAMP application might have three containers: a web server, a PHP-FPM process and MySQL. As
with shared folders in Vagrant, you can leave your application files where they are and tell Docker where to
find them.

You can generate containers from the command line (see example below) or, for ease of maintenance, build
a docker-compose.yml file for your project specifying which to create and how they communicate with one
another.

Docker may help if you’re developing multiple websites and want the separation that comes from installing
each on it’s own virtual machine, but don’t have the necessary disk space or the time to keep everything
up to date. It’s efficient: the installation and downloads are quicker, you only need to store one copy of each
image however often it’s used, containers need less RAM and share the same OS kernel, so you can have more
servers running simultaneously, and it takes a matter of seconds to stop and start them, no need to wait for a
full server boot.

Example: Running your PHP Applications in Docker

After installing docker⁹ on your machine, you can start a web server with one command. The following will
download a fully functional Apache installation with the latest PHP version, map /path/to/your/php/files
to the document root, which you can view at http://localhost:8080:

1 docker run -d --name my-php-webserver -p 8080:80 -v /path/to/your/php/files:/var/www/html/\

2 php:apache

This will initialize and launch your container. -dmakes it runs in the background. To stop and start it, simply
run docker stop my-php-webserver and docker start my-php-webserver (the other parameters are not
needed again).

Learn more about Docker

The command above shows a quickway to run a basic server. There’s muchmore you can do (and thousands of
pre-built images in the Docker Hub¹⁰). Take time to learn the terminology and read the Docker User Guide¹¹ to
get the most from it, and don’t run random code you’ve downloaded without checking it’s safe â€“ unofficial
images may not have the latest security patches. If in doubt, stick to the official repositiories¹².

The PHPDocker.io¹³ site will auto-generate all the files you need for a fully-featured LAMP/LEMP stack,
including your choice of PHP version and extensions.

⁸http://docker.com/
⁹https://docs.docker.com/installation/
¹⁰https://hub.docker.com/
¹¹https://docs.docker.com/userguide/
¹²https://hub.docker.com/explore/
¹³https://phpdocker.io/generator

www.dbooks.org

http://docker.com/
https://docs.docker.com/installation/
https://hub.docker.com/
https://docs.docker.com/userguide/
https://hub.docker.com/explore/
https://phpdocker.io/generator
http://docker.com/
https://docs.docker.com/installation/
https://hub.docker.com/
https://docs.docker.com/userguide/
https://hub.docker.com/explore/
https://phpdocker.io/generator
https://www.dbooks.org/

Virtualization 57

• Docker Website¹⁴
• Docker Installation¹⁵
• Docker User Guide¹⁶
• Docker Hub¹⁷
• Docker Hub - official images¹⁸

¹⁴http://docker.com/
¹⁵https://docs.docker.com/installation/
¹⁶https://docs.docker.com/userguide/
¹⁷https://hub.docker.com/
¹⁸https://hub.docker.com/explore/

http://docker.com/
https://docs.docker.com/installation/
https://docs.docker.com/userguide/
https://hub.docker.com/
https://hub.docker.com/explore/
http://docker.com/
https://docs.docker.com/installation/
https://docs.docker.com/userguide/
https://hub.docker.com/
https://hub.docker.com/explore/

14. Caching
PHP is pretty quick by itself, but bottlenecks can arise when you make remote connections, load files, etc.
Thankfully, there are various tools available to speed up certain parts of your application, or reduce the number
of times these various time-consuming tasks need to run.

14.1 Opcode Cache

When a PHP file is executed, it must first be compiled into opcodes¹ (machine language instructions for the
CPU). If the source code is unchanged, the opcodes will be the same, so this compilation step becomes a waste
of CPU resources.

An opcode cache prevents redundant compilation by storing opcodes in memory and reusing them on
successive calls. It will typically check signature or modification time of the file first, in case there have
been any changes.

It’s likely an opcode cache will make a significant speed improvement to your application. Since PHP 5.5
there is one built in - Zend OPcache². Depending on your PHP package/distribution, it’s usually turned on
by default -Â check opcache.enable³ and the output of phpinfo() to make sure. For earlier versions there’s a
PECL extension.

Read more about opcode caches:

• Zend OPcache⁴ (bundled with PHP since 5.5)
• Zend OPcache (formerly known as Zend Optimizer+) is now open source⁵
• APC⁶ - PHP 5.4 and earlier
• XCache⁷
• WinCache⁸ (extension for MS Windows Server)
• list of PHP accelerators on Wikipedia⁹

14.2 Object Caching

There are times when it can be beneficial to cache individual objects in your code, such as with data that is
expensive to get or database calls where the result is unlikely to change. You can use object caching software

¹http://php.net/manual/en/internals2.opcodes.php
²http://php.net/book.opcache
³http://php.net/manual/en/opcache.configuration.php#ini.opcache.enable
⁴http://php.net/book.opcache
⁵https://github.com/zendtech/ZendOptimizerPlus
⁶http://php.net/book.apc
⁷http://xcache.lighttpd.net/
⁸http://www.iis.net/download/wincacheforphp
⁹http://en.wikipedia.org/wiki/List_of_PHP_accelerators

www.dbooks.org

http://php.net/manual/en/internals2.opcodes.php
http://php.net/book.opcache
http://php.net/manual/en/opcache.configuration.php#ini.opcache.enable
http://php.net/book.opcache
https://github.com/zendtech/ZendOptimizerPlus
http://php.net/book.apc
http://xcache.lighttpd.net/
http://www.iis.net/download/wincacheforphp
http://en.wikipedia.org/wiki/List_of_PHP_accelerators
http://php.net/manual/en/internals2.opcodes.php
http://php.net/book.opcache
http://php.net/manual/en/opcache.configuration.php#ini.opcache.enable
http://php.net/book.opcache
https://github.com/zendtech/ZendOptimizerPlus
http://php.net/book.apc
http://xcache.lighttpd.net/
http://www.iis.net/download/wincacheforphp
http://en.wikipedia.org/wiki/List_of_PHP_accelerators
https://www.dbooks.org/

Caching 59

to hold these pieces of data in memory for extremely fast access later on. If you save these items to a data
store after you retrieve them, then pull them directly from the cache for following requests, you can gain a
significant improvement in performance as well as reduce the load on your database servers.

Many of the popular bytecode caching solutions let you cache custom data as well, so there’s evenmore reason
to take advantage of them. APCu, XCache, and WinCache all provide APIs to save data from your PHP code
to their memory cache.

The most commonly used memory object caching systems are APCu and memcached. APCu is an excellent
choice for object caching, it includes a simple API for adding your own data to its memory cache and is very
easy to setup and use. The one real limitation of APCu is that it is tied to the server it’s installed on.Memcached
on the other hand is installed as a separate service and can be accessed across the network, meaning that you
can store objects in a hyper-fast data store in a central location and many different systems can pull from it.

Note that when running PHP as a (Fast-)CGI application inside your webserver, every PHP process will have
its own cache, i.e. APCu data is not shared between your worker processes. In these cases, you might want to
consider using memcached instead, as it’s not tied to the PHP processes.

In a networked configuration APCu will usually outperform memcached in terms of access speed, but
memcached will be able to scale up faster and further. If you do not expect to have multiple servers running
your application, or do not need the extra features that memcached offers then APCu is probably your best
choice for object caching.

Example logic using APCu:

1 <?php

2 // check if there is data saved as 'expensive_data' in cache

3 $data = apc_fetch('expensive_data');

4 if ($data === false) {

5 // data is not in cache; save result of expensive call for later use

6 apc_add('expensive_data', $data = get_expensive_data());

7 }

8

9 print_r($data);

Note that prior to PHP 5.5, APC provides both an object cache and a bytecode cache. APCu is a project to
bring APC’s object cache to PHP 5.5+, since PHP now has a built-in bytecode cache (OPcache).

Learn more about popular object caching systems:

• APCu¹⁰
• APC Functions¹¹
• Memcached¹²
• Redis¹³
• XCache APIs¹⁴

¹⁰https://github.com/krakjoe/apcu
¹¹http://php.net/ref.apc
¹²http://memcached.org/
¹³http://redis.io/
¹⁴http://xcache.lighttpd.net/wiki/XcacheApi

https://github.com/krakjoe/apcu
http://php.net/ref.apc
http://memcached.org/
http://redis.io/
http://xcache.lighttpd.net/wiki/XcacheApi
https://github.com/krakjoe/apcu
http://php.net/ref.apc
http://memcached.org/
http://redis.io/
http://xcache.lighttpd.net/wiki/XcacheApi

Caching 60

• WinCache Functions¹⁵

¹⁵http://php.net/ref.wincache

www.dbooks.org

http://php.net/ref.wincache
http://php.net/ref.wincache
https://www.dbooks.org/

15. Documenting your Code

15.1 PHPDoc

PHPDoc is an informal standard for commenting PHP code. There are a lot of different tags¹ available. The
full list of tags and examples can be found at the PHPDoc manual².

Below is an example of how you might document a class with a few methods;

1 <?php

2 /**

3 * @author A Name <a.name@example.com>

4 * @link http://www.phpdoc.org/docs/latest/index.html

5 */

6 class DateTimeHelper

7 {

8 /**

9 * @param mixed $anything Anything that we can convert to a \DateTime object

10 *

11 * @throws \InvalidArgumentException

12 *

13 * @return \DateTime

14 */

15 public function dateTimeFromAnything($anything)

16 {

17 $type = gettype($anything);

18

19 switch ($type) {

20 // Some code that tries to return a \DateTime object

21 }

22

23 throw new \InvalidArgumentException(

24 "Failed Converting param of type '{$type}' to DateTime object"

25);

26 }

27

28 /**

29 * @param mixed $date Anything that we can convert to a \DateTime object

30 *

31 * @return void

¹http://www.phpdoc.org/docs/latest/references/phpdoc/tags/index.html
²http://www.phpdoc.org/docs/latest/index.html

http://www.phpdoc.org/docs/latest/references/phpdoc/tags/index.html
http://www.phpdoc.org/docs/latest/index.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/index.html
http://www.phpdoc.org/docs/latest/index.html

Documenting your Code 62

32 */

33 public function printISO8601Date($date)

34 {

35 echo $this->dateTimeFromAnything($date)->format('c');

36 }

37

38 /**

39 * @param mixed $date Anything that we can convert to a \DateTime object

40 */

41 public function printRFC2822Date($date)

42 {

43 echo $this->dateTimeFromAnything($date)->format('r');

44 }

45 }

The documentation for the class as a whole has the @author³ tag and a @link⁴ tag. The @author⁵ tag is used
to document the author of the code and can be repeated for documenting several authors. The @link⁶ tag is
used to link to a website indicating a relationship between the website and the code.

Inside the class, the first method has a @param⁷ tag documenting the type, name and description of the
parameter being passed to the method. Additionally it has the @return⁸ and @throws⁹ tags for documenting
the return type, and any exceptions that could be thrown respectively.

The second and third methods are very similar and have a single @param¹⁰ tag as did the first method.
The important difference between the second and third methods’ doc block is the inclusion/exclusion of the
@return¹¹ tag. @return void explicitly informs us that there is no return; historically omitting the @return
void statement also results in the same (no return) action.

³http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
⁴http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
⁵http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
⁶http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
⁷http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
⁸http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
⁹http://www.phpdoc.org/docs/latest/references/phpdoc/tags/throws.html
¹⁰http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
¹¹http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html

www.dbooks.org

http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/throws.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/throws.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
https://www.dbooks.org/

16. Resources

16.1 From the Source

• PHP Website¹
• PHP Documentation²

16.2 People to Follow

It’s difficult to find interesting and knowledgeable PHP community members when you are first starting out.
You can find a comprehensive list of PHP community members and their Twitter handles at:

• 25 PHP Developers to Follow Online³

16.3 Mentoring

• php-mentoring.org⁴ - Formal, peer to peer mentoring in the PHP community.

16.4 PHP PaaS Providers

• PagodaBox⁵
• AppFog⁶
• Heroku⁷
• fortrabbit⁸
• Engine Yard Cloud⁹
• Red Hat OpenShift Platform¹⁰
• AWS Elastic Beanstalk¹¹
• Windows Azure¹²

¹http://php.net/
²http://php.net/docs.php
³https://blog.newrelic.com/2014/05/02/25-php-developers-follow-online/
⁴http://php-mentoring.org/
⁵https://pagodabox.io/
⁶https://www.ctl.io/appfog/
⁷https://devcenter.heroku.com/categories/php
⁸https://www.fortrabbit.com/
⁹https://www.engineyard.com/features
¹⁰https://www.openshift.com/
¹¹https://aws.amazon.com/elasticbeanstalk/
¹²http://www.windowsazure.com/

http://php.net/
http://php.net/docs.php
https://blog.newrelic.com/2014/05/02/25-php-developers-follow-online/
http://php-mentoring.org/
https://pagodabox.io/
https://www.ctl.io/appfog/
https://devcenter.heroku.com/categories/php
https://www.fortrabbit.com/
https://www.engineyard.com/features
https://www.openshift.com/
https://aws.amazon.com/elasticbeanstalk/
http://www.windowsazure.com/
http://php.net/
http://php.net/docs.php
https://blog.newrelic.com/2014/05/02/25-php-developers-follow-online/
http://php-mentoring.org/
https://pagodabox.io/
https://www.ctl.io/appfog/
https://devcenter.heroku.com/categories/php
https://www.fortrabbit.com/
https://www.engineyard.com/features
https://www.openshift.com/
https://aws.amazon.com/elasticbeanstalk/
http://www.windowsazure.com/

Resources 64

• Google App Engine¹³
• Jelastic¹⁴
• Platform.sh¹⁵
• Cloudways¹⁶
• IBM Bluemix Cloud Foundry¹⁷
• Pivotal Web Service Cloud Foundry¹⁸

To see which versions these PaaS hosts are running, head over to PHP Versions¹⁹.

16.5 Frameworks

Rather than re-invent the wheel, many PHP developers use frameworks to build out web applications.
Frameworks abstract away many of the low-level concerns and provide helpful, easy-to-use interfaces to
complete common tasks.

You do not need to use a framework for every project. Sometimes plain PHP is the right way to go, but if you
do need a framework then there are three main types available:

• Micro Frameworks
• Full-Stack Frameworks
• Component Frameworks

Micro-frameworks are essentially a wrapper to route a HTTP request to a callback, controller, method, etc
as quickly as possible, and sometimes come with a few extra libraries to assist development such as basic
database wrappers and the like. They are prominently used to build remote HTTP services.

Many frameworks add a considerable number of features on top of what is available in a micro-framework
and these are known Full-Stack Frameworks. These often come bundled with ORMs, Authentication packages,
etc.

Component-based frameworks are collections of specialized and single-purpose libraries. Disparate compo-
nent-based frameworks can be used together to make a micro- or full-stack framework.

• Popular PHP Frameworks²⁰

¹³https://cloud.google.com/appengine/docs/php/
¹⁴http://jelastic.com/
¹⁵https://platform.sh/
¹⁶https://www.cloudways.com/en/
¹⁷https://console.ng.bluemix.net/
¹⁸https://run.pivotal.io/
¹⁹http://phpversions.info/paas-hosting/
²⁰https://github.com/codeguy/php-the-right-way/wiki/Frameworks

www.dbooks.org

https://cloud.google.com/appengine/docs/php/
http://jelastic.com/
https://platform.sh/
https://www.cloudways.com/en/
https://console.ng.bluemix.net/
https://run.pivotal.io/
http://phpversions.info/paas-hosting/
https://github.com/codeguy/php-the-right-way/wiki/Frameworks
https://cloud.google.com/appengine/docs/php/
http://jelastic.com/
https://platform.sh/
https://www.cloudways.com/en/
https://console.ng.bluemix.net/
https://run.pivotal.io/
http://phpversions.info/paas-hosting/
https://github.com/codeguy/php-the-right-way/wiki/Frameworks
https://www.dbooks.org/

Resources 65

16.6 Components

As mentioned above “Components” are another approach to the common goal of creating, distributing and
implementing shared code. Various component repositories exist, the main two of which are:

• Packagist²¹
• PEAR²²

Both of these repositories have command line tools associated with them to help the installation and upgrade
processes, and have been explained in more detail in the Dependency Management²³ section.

There are also component-based frameworks and component-vendors that offer no framework at all. These
projects provide another source of packages which ideally have little to no dependencies on other packages,
or specific frameworks.

For example, you can use the FuelPHP Validation package²⁴, without needing to use the FuelPHP framework
itself.

• Aura²⁵
• FuelPHP²⁶
• Hoa Project²⁷
• Orno²⁸
• Symfony Components²⁹
• The League of Extraordinary Packages³⁰
• Laravel’s Illuminate Components

– IoC Container³¹
– Eloquent ORM³²
– Queue³³

Laravel’s Illuminate components³⁴ will become better decoupled from the Laravel framework. For now, only
the components best decoupled from the Laravel framework are listed above.

²¹/#composer_and_packagist
²²/#pear
²³/#dependency_management
²⁴https://github.com/fuelphp/validation
²⁵http://auraphp.com/framework/2.x/en/
²⁶https://github.com/fuelphp
²⁷https://github.com/hoaproject
²⁸https://github.com/orno
²⁹http://symfony.com/doc/current/components/index.html
³⁰http://thephpleague.com/
³¹https://github.com/illuminate/container
³²https://github.com/illuminate/database
³³https://github.com/illuminate/queue
³⁴https://github.com/illuminate

https://github.com/fuelphp/validation
http://auraphp.com/framework/2.x/en/
https://github.com/fuelphp
https://github.com/hoaproject
https://github.com/orno
http://symfony.com/doc/current/components/index.html
http://thephpleague.com/
https://github.com/illuminate/container
https://github.com/illuminate/database
https://github.com/illuminate/queue
https://github.com/illuminate
https://github.com/fuelphp/validation
http://auraphp.com/framework/2.x/en/
https://github.com/fuelphp
https://github.com/hoaproject
https://github.com/orno
http://symfony.com/doc/current/components/index.html
http://thephpleague.com/
https://github.com/illuminate/container
https://github.com/illuminate/database
https://github.com/illuminate/queue
https://github.com/illuminate

Resources 66

16.7 Other Useful Resources

Cheatsheets

• PHP Cheatsheets³⁵ - for variable comparisons, arithmetics and variable testing in various PHP versions
• PHP Security Cheatsheet³⁶

More best practices

• PHP Best Practices³⁷
• Best practices for Modern PHP Development³⁸

PHP universe

• PHP Developer blog³⁹

16.8 Video Tutorials

YouTube Channels

• PHP Academy⁴⁰
• The New Boston⁴¹
• Sherif Ramadan⁴²
• Level Up Tuts⁴³

Paid Videos

• Standards and Best practices⁴⁴
• PHP Training on Pluralsight⁴⁵
• PHP Training on Lynda.com⁴⁶
• PHP Training on Tutsplus⁴⁷
• Laracasts⁴⁸

³⁵http://phpcheatsheets.com/
³⁶https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
³⁷https://phpbestpractices.org/
³⁸https://www.airpair.com/php/posts/best-practices-for-modern-php-development
³⁹http://blog.phpdeveloper.org/
⁴⁰https://www.youtube.com/user/phpacademy
⁴¹https://www.youtube.com/user/thenewboston
⁴²https://www.youtube.com/user/businessgeek
⁴³https://www.youtube.com/user/LevelUpTuts
⁴⁴http://teamtreehouse.com/library/standards-and-best-practices
⁴⁵http://www.pluralsight.com/search/?searchTerm=php
⁴⁶http://www.lynda.com/search?q=php
⁴⁷http://code.tutsplus.com/categories/php/courses
⁴⁸https://laracasts.com/

www.dbooks.org

http://phpcheatsheets.com/
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
https://phpbestpractices.org/
https://www.airpair.com/php/posts/best-practices-for-modern-php-development
http://blog.phpdeveloper.org/
https://www.youtube.com/user/phpacademy
https://www.youtube.com/user/thenewboston
https://www.youtube.com/user/businessgeek
https://www.youtube.com/user/LevelUpTuts
http://teamtreehouse.com/library/standards-and-best-practices
http://www.pluralsight.com/search/?searchTerm=php
http://www.lynda.com/search?q=php
http://code.tutsplus.com/categories/php/courses
https://laracasts.com/
http://phpcheatsheets.com/
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
https://phpbestpractices.org/
https://www.airpair.com/php/posts/best-practices-for-modern-php-development
http://blog.phpdeveloper.org/
https://www.youtube.com/user/phpacademy
https://www.youtube.com/user/thenewboston
https://www.youtube.com/user/businessgeek
https://www.youtube.com/user/LevelUpTuts
http://teamtreehouse.com/library/standards-and-best-practices
http://www.pluralsight.com/search/?searchTerm=php
http://www.lynda.com/search?q=php
http://code.tutsplus.com/categories/php/courses
https://laracasts.com/
https://www.dbooks.org/

Resources 67

16.9 Books

There are many PHP books; sadly some are now quite old and no longer accurate. In particular, avoid books
on “PHP 6”, a version that will now never exist. The next major release of PHP after 5.6 was “PHP 7”, partly
because of this⁴⁹.

This section aims to be a living document for recommended books on PHP development in general. If you
would like your book to be added, send a PR and it will be reviewed for relevancy.

Free Books

• PHP Pandas⁵⁰ - Aims to teach everyone how to be a web developer.
• PHP The Right Way⁵¹ - This website is available as a book completely for free.
• Using Libsodium in PHP Projects⁵² - Guide to using Libsodium PHP extension for modern, secure, and
fast cryptography.

Paid Books

• Build APIs You Won’t Hate⁵³ - Everyone and their dog wants an API, so you should probably learn
how to build them.

• Modern PHP⁵⁴ - covers modern PHP features, best practices, testing, tuning, deployment and setting
up a dev environment.

• Building Secure PHP Apps⁵⁵ - Learn the security basics that a senior developer usually acquires over
years of experience, all condensed down into one quick and easy handbook

• Modernizing Legacy Applications In PHP⁵⁶ - Get your code under control in a series of small, specific
steps

• Securing PHP: Core Concepts⁵⁷ - A guide to some of the most common security terms and provides
some examples of them in every day PHP

• Scaling PHP⁵⁸ - Stop playing sysadmin and get back to coding
• Signaling PHP⁵⁹ - PCNLT signals are a great help when writing PHP scripts that run from the command
line.

• The Grumpy Programmer’s Guide To Building Testable PHP Applications⁶⁰ - Learning to write testable
code doesn’t have to suck.

• Minimum Viable Tests⁶¹ - Long-time PHP testing evangelist Chris Hartjes goes over what he feels is
the minimum you need to know to get started.

⁴⁹https://wiki.php.net/rfc/php6
⁵⁰http://daylerees.com/php-pandas/
⁵¹https://leanpub.com/phptherightway/
⁵²https://paragonie.com/book/pecl-libsodium
⁵³https://apisyouwonthate.com/
⁵⁴http://shop.oreilly.com/product/0636920033868.do
⁵⁵https://leanpub.com/buildingsecurephpapps
⁵⁶https://leanpub.com/mlaphp
⁵⁷https://leanpub.com/securingphp-coreconcepts
⁵⁸http://www.scalingphpbook.com/
⁵⁹https://leanpub.com/signalingphp
⁶⁰https://leanpub.com/grumpy-testing
⁶¹https://leanpub.com/minimumviabletests

https://wiki.php.net/rfc/php6
https://wiki.php.net/rfc/php6
http://daylerees.com/php-pandas/
https://leanpub.com/phptherightway/
https://paragonie.com/book/pecl-libsodium
https://apisyouwonthate.com/
http://shop.oreilly.com/product/0636920033868.do
https://leanpub.com/buildingsecurephpapps
https://leanpub.com/mlaphp
https://leanpub.com/securingphp-coreconcepts
http://www.scalingphpbook.com/
https://leanpub.com/signalingphp
https://leanpub.com/grumpy-testing
https://leanpub.com/minimumviabletests
https://wiki.php.net/rfc/php6
http://daylerees.com/php-pandas/
https://leanpub.com/phptherightway/
https://paragonie.com/book/pecl-libsodium
https://apisyouwonthate.com/
http://shop.oreilly.com/product/0636920033868.do
https://leanpub.com/buildingsecurephpapps
https://leanpub.com/mlaphp
https://leanpub.com/securingphp-coreconcepts
http://www.scalingphpbook.com/
https://leanpub.com/signalingphp
https://leanpub.com/grumpy-testing
https://leanpub.com/minimumviabletests

17. Community
The PHP community is as diverse as it is large, and its members are ready and willing to support new PHP
programmers. Consider joining your local PHP user group (PUG) or attending larger PHP conferences to learn
more about the best practices shown here. You can hang out on IRC in the #phpc channel on irc.freenode.com¹
and follow the @phpc² twitter account. Get out there, meet new developers, learn new topics, and above
all, make new friends! Other community resources include the Google+ PHP Programmer community³ and
StackOverflow⁴.

Read the Official PHP Events Calendar⁵

17.1 PHP User Groups

If you live in a larger city, odds are there’s a PHP user group nearby. You can easily find your local PUG at the
usergroup-list at php.net⁶ which is based upon PHP.ug⁷. Alternate sources might be Meetup.com⁸ or a search
for php user group near me using your favorite search engine (i.e. Google⁹). If you live in a smaller town,
there may not be a local PUG; if that’s the case, start one!

Special mention should be made of two global user groups: NomadPHP¹⁰ and PHPWomen¹¹. NomadPHP¹²
offers twice monthly online user group meetings with presentations by some of the top speakers in the PHP
community. PHPWomen¹³ is a non-exclusive user group originally targeted towards the women in the PHP
world. Membership is open to everyone who supports a more diverse community. PHPWomen provide a
network for support, mentorship and education, and generally promote the creating of a “female friendly”
and professional atmosphere.

Read about User Groups on the PHP Wiki¹⁴

17.2 PHP Conferences

The PHP community also hosts larger regional and national conferences in many countries around the world.
Well-known members of the PHP community usually speak at these larger events, so it’s a great opportunity
to learn directly from industry leaders.

¹http://webchat.freenode.net/?channels=phpc
²https://twitter.com/phpc
³https://plus.google.com/u/0/communities/104245651975268426012
⁴http://stackoverflow.com/questions/tagged/php
⁵http://php.net/cal.php
⁶http://php.net/ug.php
⁷http://php.ug/
⁸http://www.meetup.com/find/
⁹https://www.google.com/search?q=php+user+group+near+me
¹⁰https://nomadphp.com/
¹¹http://phpwomen.org/
¹²https://nomadphp.com/
¹³http://phpwomen.org/
¹⁴https://wiki.php.net/usergroups

www.dbooks.org

http://webchat.freenode.net/?channels=phpc
https://twitter.com/phpc
https://plus.google.com/u/0/communities/104245651975268426012
http://stackoverflow.com/questions/tagged/php
http://php.net/cal.php
http://php.net/ug.php
http://php.ug/
http://www.meetup.com/find/
https://www.google.com/search?q=php+user+group+near+me
https://nomadphp.com/
http://phpwomen.org/
https://nomadphp.com/
http://phpwomen.org/
https://wiki.php.net/usergroups
http://webchat.freenode.net/?channels=phpc
https://twitter.com/phpc
https://plus.google.com/u/0/communities/104245651975268426012
http://stackoverflow.com/questions/tagged/php
http://php.net/cal.php
http://php.net/ug.php
http://php.ug/
http://www.meetup.com/find/
https://www.google.com/search?q=php+user+group+near+me
https://nomadphp.com/
http://phpwomen.org/
https://nomadphp.com/
http://phpwomen.org/
https://wiki.php.net/usergroups
https://www.dbooks.org/

Community 69

Find a PHP Conference¹⁵

17.3 ElePHPants

ElePHPant¹⁶ is that beautiful mascot of the PHP project with elephant in their design. It was originally
designed for the PHP project in 1998 by Vincent Pontier¹⁷ - spiritual father of thousands of elePHPants around
the world and 10 years later adorable plush elephant toy came to birth as well. Now elePHPants are present
at many PHP conferences and with many PHP developers at their computers for fun and inspiration.

Interview with Vincent Pontier¹⁸

¹⁵http://php.net/conferences/index.php
¹⁶http://php.net/elephpant.php
¹⁷http://www.elroubio.net/
¹⁸http://7php.com/elephpant/

http://php.net/conferences/index.php
http://php.net/elephpant.php
http://www.elroubio.net/
http://7php.com/elephpant/
http://php.net/conferences/index.php
http://php.net/elephpant.php
http://www.elroubio.net/
http://7php.com/elephpant/

	Table of Contents
	Getting Started
	Use the Current Stable Version (7.0)
	Built-in web server
	Mac Setup
	Windows Setup

	Code Style Guide
	Language Highlights
	Programming Paradigms
	Namespaces
	Standard PHP Library
	Command Line Interface
	Xdebug

	Dependency Management
	Composer and Packagist
	PEAR

	Coding Practices
	The Basics
	Date and Time
	Design Patterns
	Working with UTF-8

	Dependency Injection
	Basic Concept
	Complex Problem
	Containers
	Further Reading

	Databases
	MySQL Extension
	PDO Extension
	Interacting with Databases
	Abstraction Layers

	Templating
	Benefits
	Plain PHP Templates
	Compiled Templates
	Further Reading

	Errors and Exceptions
	Errors
	Exceptions

	Security
	Web Application Security
	Password Hashing
	Data Filtering
	Configuration Files
	Register Globals
	Error Reporting

	Testing
	Test Driven Development
	Behavior Driven Development
	Complementary Testing Tools

	Servers and Deployment
	Platform as a Service (PaaS)
	Virtual or Dedicated Servers
	Shared Servers
	Building and Deploying your Application

	Virtualization
	Vagrant
	Docker

	Caching
	Opcode Cache
	Object Caching

	Documenting your Code
	PHPDoc

	Resources
	From the Source
	People to Follow
	Mentoring
	PHP PaaS Providers
	Frameworks
	Components
	Other Useful Resources
	Video Tutorials
	Books

	Community
	PHP User Groups
	PHP Conferences
	ElePHPants

