
Shell Scripting with Bash

Kurt Schmidt

Skipjack Solutions

October 10, 2024

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 1 / 57

Intro

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 2 / 57

What is a Script?

A sequence of Bash commands
A Bash program
Stored as a text file

Interpreted by the Bash shell

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 3 / 57

Why Write Scripts

Convenience
Sequences of oft-performed operations can be placed in a script,
executed as a single command
Shell provides access to many useful utilities
I have scripts for simple tasks, and scripts for some fairly complex
tasks:

Rename all files of the form DSCnnnn.JPG to nnnn.jpeg
Organise the flat directory of heavily decorated filenames
downloaded from Blackboard into subdirectories by student,
restoring the original filenames
A testing framework, for grading student programs. Calls individual
test cases (themselves scripts) for each program to grade

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 4 / 57

Shell Scripts vs. C-like Languages

Shells are built for comfort. This comes at a cost
Shell scripts are generally not as well-suited to large tasks

They run more slowly, are more resource-intensive
Scripts do not give the programmer nearly the same control over
resources

Languages such as C allow for much more structured programs
Shell scripts are more difficult to harden against security attacks

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 5 / 57

Hello, Script!

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 6 / 57

Our First Bash Script

Consider the following file, hello

#!/bin/bash
echo "Hello, $USER"
exit 0 # success

#!/bin/bash – sha-bang
First line
Identifies the interpreter who is to execute this script

Always quote variables in scripts
If you don’t think you need to, quote it anyway!

exit 0 – The return value (status) of the script
success – Line comment

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 7 / 57

Running a Script

Can be given explicitly to Bash as a simple input text file:

$ bash hello
Hello, kschmidt

Or, we can give it execute permissions, run it as any other utility:

$ chmod +x hello
$ hello
hello: command not found

Whoops! The current directory isn’t in my PATH (nor should it be).
Tell the shell where it is:

$./hello
Hello, kschmidt

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 8 / 57

Conditionals

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 9 / 57

Tests for Branches and Loops

We need tests for branches and loops
We’ve already seen the return value of commands

Zero (0) is true (success)
All else is false (signals some failure)
Can be negated using ! before

There are special utilities and Bash built-ins to provide various
tests

test, [] Provides string, numeric, and file tests
[[]] Similar to [], but gentler syntax
let, (()) Provides numeric tests and arithmetic

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 10 / 57

[] – String Tests

[expr]
Built into Bash

But behaves like the disk utility (less than pretty)
Only such test available in Bourne shell

Note, the spaces around the [] are necessary
Provides:

String tests
File tests
Numeric tests
Logical operators

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 11 / 57

[] – String Tests

We have the normal binary, relational operators

< = != >

$ [a = b] || echo false
false
$ [jaga < kurt] && echo true
bash: kurt: No such file or directory

Whoops! < is a shell metacharacter. Needs to be escaped

$ [jaga \< kurt] && echo true
true

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 12 / 57

[] – String Tests

We have unary tests for strings

-z True if string is empty
-n True if string is not empty

[-z "$1"] && echo "Script requires a filename as an argument"
[-n "$1"] || echo "Script requires a filename as an argument"

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 13 / 57

[] – File Tests

Many unary tests for files. Here are a few:1

-e file True if file exists
-d file True if file is a directory
-f file True if file is a regular file
-L file True if file is a symbolic link
-r file True if file is readable by you
-w file True if file is writable by you
-x file True if file is executable by you
-O file True if file is effectively owned by you

1Do a help test, or man test for more
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 14 / 57

[] – File Tests, 2

There are some binary operators for files:

f1 -nt f2 True if f1 is newer than f2
f1 -ot f2 True if f1 is older than f2
f1 -ef f2 True if f1 is a hard link to f2 (they

are the same file)

[-f "$log"] && echo "Next status line" >> "$log"
[-r "$input"] || echo "I can’t read $input"
["$f1" -ef "$f2"] &&

echo "I can remove $f1 and $f2 will still be there"

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 15 / 57

[] – Arithmetic Tests

We have different relational operators for arithmetic1

All parameter values are just strings
Shell can’t tell from context which comparison is meant

-lt -le -eq -ne -ge -gt

$ [13 \< 2] && echo true
true
$ [13 -lt 2] || echo false
false

1The let utility makes this prettier
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 16 / 57

[] – Logical Operators

! expr NOT - True when expr is false,
false otherwise

exp1 -a exp2 AND - True when both exp1 and
exp2 are true, false otherwise

exp1 -o exp2 OR - False when both exp1 and
exp2 are false, true otherwise

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 17 / 57

[[]]

Supports all the same tests as []
Is a built-in, so, syntax is gentler

Shell metacharacters <, >, etc., don’t need to be escaped
Shell knows it’s in a test

Mind, install scripts (and makefiles) tend to use Bourne syntax; it’s
the default for all Unix systems

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 18 / 57

[[]] – New Features

Familiar logical operators
! && ||

== = both test for equality
== != treat the right operand as a pattern (glob)

$ [[abcde.f == a*e.?]] && echo true
true

New operator, =˜, treats the right operand as an extended regular
expression

$ [[abcde.f =~ a.*e\..?]] && echo true
true

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 19 / 57

(()) – let, Relational Operators

let is a Bash built-in
Bash provides syntactic sugar: (())1

Treats values stored in parameters as integers2

N.B – Only does integer arithmetic (division)
Allows you to evaluate relational expressions

Same logical operators

< <= == != >= >

$ x=13 ; y=87
$ ((x > 7)) && echo true
true
$ ((x!=0 && y/x >= 6)) && echo true
true

1Note, the $[] form is deprecated
2For float arithmetic, see the bc utility

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 20 / 57

(()) – let, Arithmetic Operators

let can be used to evaluate arithmetic exceptions
Arithmetic: ** * / % + -

Bit-wise: ˜ << >> ˆ & |

Pre- and post-fix increment/decrement: ++ --

A C-like ternary operator: ?:

Assignment (=), and the usual operator/assignment operators: +=
-= &=, etc.

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 21 / 57

(()) – Examples

$ x=13
$ echo $((x+15))
28
$ echo $x
13
$ ((y = x*4))
$ echo $y
52
$ ((y-=1))
$ echo $y
51
$ echo $((x>>2))
3
$ ((5 && 2)) && echo true
true
$ ((5 & 2)) || echo false
false
$ # Same as in C, Python, etc. Why?

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 22 / 57

Integer Literals

Integer Literals
Be careful. Try the following out.

$ echo $((012))
10
$ echo $((0x23))
35

This is not an odd artifact of Bash, nor of let. You will find similar
behavior in C, AWK, Python2, Java, etc.

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 23 / 57

Control Flow

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 24 / 57

Bash Control Structures

We have branching:
if

if-else

if-elif-else

case

And loops:
while

until

for

select

Note: Bash may not care about proper indenting, but your grade may
well care

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 25 / 57

if

if tests; then cmds; fi

tests is executed
If the exit status is 0 (success), cmds is executed

if grep Waldo * &> /dev/null ; then
echo "Found Waldo!"

fi

if [[-d "$paris" && -r "$paris"]] ; then
echo "I see $paris"’!’

fi

if ((cats > 3)) ; then
echo "Too many cats"
echo "People will talk"

fi

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 26 / 57

if-else

if tests; then cmds; else cmds; fi

if grep Waldo * &> /dev/null ; then
echo "Found Waldo!"

else
echo "Dude’s a slippery one"

fi

if [[-d "$paris" && -r "$paris"]] ; then
echo "I see $paris"’!’

else
echo "Might be on the wrong continent"

fi

if ((cats > 3)) ; then
echo "Too many cats"
echo "People will talk"

else
echo "You might yet be sane"

fi

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 27 / 57

if-elif-else

if tests; then cmds; {elif cmds;} else cmds; fi

read grade
if ((grade >= 90)) ; then

echo "A"
elif ((grade >= 80)) ; then

echo "B"
elif ((grade >= 70)) ; then

echo "C"
elif ((grade >= 60)) ; then

echo "D"
else

echo "F"
fi

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 28 / 57

while Loop

while tests; do cmds; done

tests is executed
If the exit status is 0 (success), cmds is executed
Execution returns back to tests , start again

i=0
while ((i<=12)) ; do

echo $i
((i+=1))

done

cat list | while read f ; do
Assume list contains one filename per line
stat "$f"

done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 29 / 57

for Loop

for name [in list]; do cmds ; done

Executes cmds for each member in list

"$@" used if list isn’t there

$ for i in a b c ; do
> echo $i
> done
a
b
c

for id in $(cat userlist) ; do
assumes no spaces in userIDs

echo "Mailing $id..."
mail -s "Good subject" "$id"@someschool.edu < msg

done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 30 / 57

Reading Files in Directory

Use read to Preserve Spaces
You must be aware of filenames with spaces
Consider the different approaches:

$ ls -1
’a space’
nospace
$ for f in $(ls -1) ; do
> echo $f
> done
a
space
nospace
$ ls -1 | while read f ; do
> echo $f
> done
a space
nospace

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 31 / 57

Counting for Loop

Bash has a C-like for loop:

$ for ((i=0; i<3; ++i)) ; do
> echo $i
> done
0
1
2

$ for ((i=12; i>0; i-=4)) ; do
> echo $i
> done
12
8
4

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 32 / 57

{x..y} – Brace Expansion

{x..y[..inc]}
Generates sequences in a natural way

$ echo {5..13}
5 6 7 8 9 10 11 12 13

$ echo {a..g}
a b c d e f g
$

Brace expansion will pad numbers on the left1

$ for i in {000..010..2} ; do echo -n "$i " ; done
000 002 004 006 008 010

This is quite handy in loops:

for i in {00..05} ; do
\rm proc${i}.log

done

1YMMV, depending on your platform
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 33 / 57

Loops – continue, break

break exits a loop
continue shortcircuits the loop, resumes at the next iteration of
the loop

$ for i in {1..42} ; do
> ((i%2 == 0)) && continue
> ((i%9 == 0)) && break
> echo $i
> done
1
3
5
7
$

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 34 / 57

case

case word in {pattern) cmds ;;} esac

Selectively execute cmds if word matches the corresponding
pattern (glob)
Commands are separated by ;

Cases are separated by ;;

case $opt in
n) DRY_RUN=1 ;;
x) ECHO=1 ;;
\? | h | H) usage() ; exit 1 ;;
?) echo "Unkown character ;;

esac

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 35 / 57

select

select name [in list]; do cmds ; done

Much like the for loop
Displays enumerated menu of list

Puts user’s choice in name

$ select resp in "This" "That" "Quit" ; do
> echo "You chose $resp"
> ["$resp" == Quit] && {echo ’bye!’ ; break ; }
> done
1) This
2) That
3) Quit
#? 2
You chose That
#? 3
You chose Quit
bye!
$

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 36 / 57

Scripts, Arguments

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 37 / 57

Organised Evolution

Do not write the whole thing at once!
Guys, don’t write the entire script, any program, then try to compile or
run.
Break it into smaller, logical pieces, and build upwards:

Get the loop/input correct, e.g., selecting only files of interest
Separately, get the processing for a single file correct
Now, put those pieces together

Interactive interpreters help you, here, because you can test a line or a
loop interactively as you’re writing your script.

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 38 / 57

More Bash Parameters

These should be familiar:

$$ The process ID (pid) of the shell
$? The exit status of the last command

These are handy inside scripts and functions

$# The number of arguments
$* All arguments
$@ All arguments (individually quoted)
${n } The n th positional argument

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 39 / 57

Arguments to Scripts

If the script has a proper sha-bang, and the execution bit is set,
the script may be invoked directly
Arguments may be supplied, as with any other commad

myScript arg1 arg2 ...

Or, bash may be invoked explicitly, and given a script as input
Arguments to the script would follow the script

bash myScript arg1 arg2 ...

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 40 / 57

Arguments to Scripts

Bash, in turn, can take options
There are two helpful ones for writing and debugging scripts

-n Dry run. File is parsed, but commands aren’t
executed. Check syntax

-x Echo on. Commands are echoed to stderr as
they’re executed (after parameter, file, etc. ex-
pansion has happened)

$ bash -x ./hello
+ echo ’Hello World’
Hello World
+ echo ’My name is kschmidt’
My name is kschmidt

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 41 / 57

Arguments in Scripts

Arguments are positional
$0 is the name of the command (how it was invoked)
In Bourne, $1 – $9

Can’t access $10, it’d be $1 followed by 0

In Bash, we can wrap parameters in curly braces, so, ${1}, ${12},
etc.

(See Labs/Bash/args.bash)

echo "Here is how the script was invoked: $0"
echo "Here are the arguments: $*"
echo "This is the number of arguments: $#"
echo "We’ll show each arg:"
for a in "$@" ; do echo "$a" ; done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 42 / 57

Processing Args – shift

shift [cnt]

Shifts args to the left cnt (default 1) positions
$1 is gone, $2 → $1, etc.

i=0
while [! -z "$1"] ; do

((i+=1)) # just here to enumerate output
echo -e "$i\t$1"
shift # old $1 is gone

done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 43 / 57

Processing Args – getopts

getopts optstring name

Bash built-in
Just handles short (single character) options1

Returns SUCCESS when it finds an option
optstring is the list of options

Options that take an arg are followed by a colon (:)

name holds the current option
Index of current arg stored in $OPTIND

If option takes an arg, it is stored in $OPTARG

1See getopt utility
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 44 / 57

getopts – e.g.

while getopts "ab:cC" opt; do
case $opt in

a) echo "option a, at index $OPTIND";;
b) echo "option b with arg = $OPTARG, at index $OPTIND";;
c | C) echo "option $opt, at index $OPTIND";;
?) echo "usage: $0 [-a] [b arg] [-c] args..." ; exit 1;;

esac
done

echo "\$OPTIND = $OPTIND"
shift $(($OPTIND -1)) # shift off the options

echo -e "\nHere are the remaining arguments:"
for i in "$@" ; do

echo -e "\t$i"
done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 45 / 57

Functions

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 46 / 57

Bash Functions

function name {body} 1

name() {body}

Executed in the same environment
Arguments to function are handled the same as arguments to a
script2

Can be called recursively (see $FUNCNEST)
Built-in return rv can be used in a function, to return execution
(and optional status rv) to caller

Otherwise, status of last command is used

Export to make available to subshells:
export -f funcname

1In fact, the curly braces and body can be any compound command
2Except that $0 is unchanged. See $FUNCNAME

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 47 / 57

Functions – Parameters

Accessed just as in a script
$1, $2, . . .

$0 is the caller’s $0
See $FUNCNAME

$#, $*, $@ behave the same
shift works the same

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 48 / 57

Functions – e.g.

function hello
{

echo "hello $1"
if [[-n "$2" && "$2" -gt 1]] ; then

hello $1 $(($2-1))
fi

}

Called as a script would be:

$ hello Vera 3
hello Vera
hello Vera
hello Vera

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 49 / 57

Local Variables in Functions

local {var}

Defines variable(s) local to function
Won’t step on caller’s environment

function hello {
local USER=’Elmer Fudd’
FOO=’Hunting Wabbit’
echo "Hello, $USER, you are $FOO"

}

$ FOO=’Baking Cookies’
$ echo $USER
kschmidt
$ hello
Hello, Elmer Fudd, you are Hunting Wabbit
$ echo $FOO
Hunting Wabbit
$ echo $USER
kschmidt

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 50 / 57

Parameter Expansion

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 51 / 57

Unset or Null Parameters

Expansions for unset (or null) parameters:

${param :-word } Use word if param is not set or is
null

${param :=word } Use word if param is not set or is
null, set it to word

${param :?word } If param is not set or is null, print
word to stderr, exit shell (if not in-
teractive)

${param :+word } If param is set, use word , other-
wise use null

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 52 / 57

E.g. – Null Parameters

$ unset foo
$ echo ${foo:-"Hello!"}
Hello!
$ echo $foo

$ echo ${foo:?"Houston, we have a problem"}
bash: foo: Houston, we have a problem
$ echo ${foo:+"We here?"}

$ echo ${foo:=’I am de Fault’}
I am de Fault
$ echo $foo
I am de Fault
$ echo ${foo:?"Houston, we have a problem"}
I am de Fault
$ echo ${foo:+"We here?"}
We here?

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 53 / 57

Removing Patterns

Remove leading or trailing Patterns (globs)

${param #pattern } Remove shortest leading pattern
${param ##pattern } Remove longest leading pattern
${param %pattern } Remove shortest trailing pattern
${param %%pattern } Remove longest trailing pattern

$ f=a^b^c
$ echo ${f#*^}
b^c
$ echo ${f##*^}
c
$ echo ${f%%^*}
a
$ echo ${f%^*}
a^b

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 54 / 57

Parameters – Pattern Substitution

${param/pattern/string}
Substitutes string for longest matching pattern

Again, pattern is a glob, not a regular expression

If pattern starts with /, it substitutes all occurrences

$ f="The cat sat on the hat"
$ echo ${f/[hcs]at/XXX}
The XXX sat on the hat
$ echo ${f//[hcs]at/XXX}
The XXX XXX on the XXX

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 55 / 57

Parameters – Substrings

${param:offset}
${param:offset:length}

Extract substring starting at index offset
Extract length (all remaining) characters

$ n=’Kurt Schmidt’
$ echo ${n:3}
t Schmidt
$ echo ${n:5:3}
Sch

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 56 / 57

Parameters – Change Case

${param<OP>pattern}
Change case of characters matched by pattern
pattern should not attempt to match a larger string
If pattern is missing, treated as a ?
ˆ ˆˆ – Convert first (each) matched character to upper
, ,, – Convert first (each) matched character to lower

$ f=SHOUT
$ echo ${f,}
sHOUT
$ echo ${f,,}
shout
$ echo ${f,[SOT]}
sHOUT
$ echo ${f,,[SOT]}
sHoUt
$ f=quiet
$ echo ${f^^}
QUIET

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 57 / 57

	Intro
	Hello, Script!
	Conditionals
	test – []
	[[]] Built-in
	let – Arithmetic

	Control Flow
	if-elif-else
	Loops

	Scripts, Arguments
	Functions
	Parameter Expansion

