Shell Scripting with Bash

Kurt Schmidt

Skipjack Solutions

October 10, 2024

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

1/57

What is a Script?

@ A sequence of Bash commands

@ A Bash program
@ Stored as a text file
o Interpreted by the Bash shell

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

3/57

Why Write Scripts

@ Convenience

@ Sequences of oft-performed operations can be placed in a script,
executed as a single command

@ Shell provides access to many useful utilities

@ | have scripts for simple tasks, and scripts for some fairly complex
tasks:

o Rename all files of the form DSCnnnn. JPG t0 nnnn. jpeg

e Organise the flat directory of heavily decorated filenames
downloaded from Blackboard into subdirectories by student,
restoring the original filenames

o A testing framework, for grading student programs. Calls individual
test cases (themselves scripts) for each program to grade

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 4/57

Shell Scripts vs. C-like Languages

@ Shells are built for comfort. This comes at a cost
@ Shell scripts are generally not as well-suited to large tasks

e They run more slowly, are more resource-intensive
@ Scripts do not give the programmer nearly the same control over
resources

@ Languages such as C allow for much more structured programs
@ Shell scripts are more difficult to harden against security attacks

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 5/57

Our First Bash Script

Consider the following file, hello

#!/bin/bash
echo "Hello, $USER"
exit O # success

@ #!/bin/bash — sha-bang

o Firstline
o |dentifies the interpreter who is to execute this script

@ Always quote variables in scripts
e If you don’t think you need to, quote it anyway!

@ exit 0 — The return value (status) of the script
@ # success — Line comment

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

7/57

Running a Script

@ Can be given explicitly to Bash as a simple input text file:

$ bash hello
Hello, kschmidt

@ Or, we can give it execute permissions, run it as any other utility:

$ chmod +x hello
$ hello
hello: command not found

@ Whoops! The current directory isn’t in my PATH (nor should it be).
Tell the shell where it is:

$./hello
Hello, kschmidt

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 8/57

Tests for Branches and Loops

We need tests for branches and loops
@ We’'ve already seen the return value of commands
e Zero (0) is true (success)
o All else is false (signals some failure)
@ Can be negated using ! before
@ There are special utilities and Bash built-ins to provide various
tests

test, [1 Provides string, numeric, and file tests
(C 1] Similar to [1, but gentler syntax
let, (()) Provides numeric tests and arithmetic

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 10/57

[1 — String Tests

[expr 1
@ Built into Bash

o But behaves like the disk utility (less than pretty)
@ Only such test available in Bourne shell

@ Note, the spaces around the [1 are necessary
@ Provides:

String tests

o File tests

o Numeric tests

o Logical operators

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 11/57

[1 — String Tests

@ We have the normal binary, relational operators

$ [a=b1l |l echo false

false

$ [jaga < kurt] &% echo true

bash: kurt: No such file or directory

@ Whoops! < is a shell metacharacter. Needs to be escaped

$ [jaga \< kurt] && echo true
true

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

12/57

[1 — String Tests

We have unary tests for strings

-z True if string is empty
-n True if string is not empty

[-z "$1"] && echo "Script requires a filename as an argument"
[-n "$1" 1 || echo "Script requires a filename as an argument"

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

13/57

[1 — File Tests

Many unary tests for files. Here are a few:'

-e file Trueif file exists

-d file Trueif file is a directory

-f file Trueif file is a regular file

-L file Trueif file is a symbolic link

-r file Trueif file is readable by you

-w file Trueif file is writable by you

-x file Trueif file is executable by you

-0 file Trueif file is effectively owned by you

'Do a help test, orman test for more
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 14/57

[] —File Tests, 2

There are some binary operators for files:

f1 -nt f2 Trueif f1 is newer than f2

f1 -ot f2 Trueif f1 is olderthan f2

f1 -ef f2 Trueif f1 is a hard link to f2 (they
are the same file)

—

-f "$log"] && echo "Next status line" >> "$log"

[-r "$input"] || echo "I can’t read $input"

"$E1M -ef "$£2" 1 &

echo "I can remove $f1 and $£f2 will still be there"

—

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

15/57

[1 — Arithmetic Tests

@ We have different relational operators for arithmetic'

o All parameter values are just strings
@ Shell can’t tell from context which comparison is meant

-1t -le -eq -ne -ge -gt

$ [13 \< 2] && echo true
true

$ [13 -1t 2] || echo false
false

"The 1et utility makes this prettier
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

16/57

[1 - Logical Operators

! ezxpr
expl -a ezxp2

expl -o ezxp2

Kurt Schmidt (Skipjack Solutions)

NOT - True when ezpr is false,
false otherwise

AND - True when both ezpz and
exp2 are true, false otherwise

OR - False when both ezp: and
ezp2 are false, true otherwise

Shell Scripting with Bash October 10, 2024

17/57

(L 1]

@ Supports all the same tests as []
@ Is a built-in, so, syntax is gentler

o Shell metacharacters <, >, etc., don’t need to be escaped
o Shell knows it’s in a test

@ Mind, install scripts (and makefiles) tend to use Bourne syntax; it’s
the default for all Unix systems

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 18/57

[[1] — New Features

@ Familiar logical operators
o ! && ||

= both test for equality
I= treat the right operand as a pattern (glob)

$ [[abcde.f == a*xe.?]] && echo true
true

@ New operator, =~, treats the right operand as an extended regular
expression

$ [[abcde.f =~ a.*e\..?]] && echo true
true

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 19/57

(()) — 1let, Relational Operators

@ let is a Bash built-in

@ Bash provides syntactic sugar: (())’

@ Treats values stored in parameters as integers?
o N.B-Only does integer arithmetic (division)

@ Allows you to evaluate relational expressions
e Same logical operators

$ x=13 ; y=87

$ (Cx >7)) & echo true

true

$ ((x!=0 && y/x >= 6)) && echo true
true

"Note, the $[1 form is deprecated
2For float arithmetic, see the be utility
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 20/57

(C)) — 1let, Arithmetic Operators

let can be used to evaluate arithmetic exceptions
@ Arithmetic: *x x / % + -
@ Bit-wise: ~ << >> " & |
@ Pre- and post-fix increment/decrement: ++ --
@ A C-like ternary operator: 7:

@ Assignment (=), and the usual operator/assignment operators: +=
-= &=, efc.

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 21/57

(C)) — Examples

$ x=13

$ echo $((x+15))

28

$ echo $x

13

$ (Cy=x*x4))

$ echo $y

52

$ (Cy—=1))

$ echo $y

51

$ echo $((x>>2))

3

$ ((5 &% 2)) && echo true
true

$ ((5&2)) || echo false
false

$ # Same as in C, Python, etc. Why?

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

22/57

Integer Literals

Integer Literals
Be careful. Try the following out.

$ echo $((012))
10
$ echo $((0x23))
35

This is not an odd artifact of Bash, nor of 1et. You will find similar
behavior in C, AWK, Python2, Java, etc.

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

23/57

Bash Control Structures

We have branching:
@ if
@ if-else
@ if-elif-else
@ case
And loops:
@ while
@ until
@ for
@ select

Note: Bash may not care about proper indenting, but your grade may
well care

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 25/57

if

if tests; then cmds; fi
@ tests is executed
@ If the exit status is 0 (success), cmds is executed

if grep Waldo * &> /dev/null ; then
echo "Found Waldo!"
fi

if [[-d "$paris" && -r "$paris"]] ; then
echo "I see $paris"’!’
fi

if ((cats > 3)) ; then
echo "Too many cats"
echo "People will talk"
fi

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

26/57

if-else

if tests; then cmds; else cmds; fi

if grep Waldo * &> /dev/null ; then
echo "Found Waldo!"

else
echo "Dude’s a slippery one"

fi

if [[-d "$paris" && -r "$paris" 1] ; then
echo "I see $paris"’!’
else
echo "Might be on the wrong continent"
fi

if ((cats > 3)) ; then

echo "Too many cats"

echo "People will talk"
else

echo "You might yet be sane"
fi

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

27/57

if-elif-else

if tests; then cmds; {elif cmds;} else cmds; fi

read grade

if ((grade >= 90)) ; then
echo "A"

elif ((grade >= 80)) ; then
echo "B"

elif ((grade >= 70)) ; then
echo "C"

elif ((grade >= 60)) ; then
echo "D"

else
echo "F"

fi

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 28/57

while Loop

while tests; do cmds; done
@ tests is executed
@ If the exit status is 0 (success), cmds is executed
@ Execution returns back to tests, start again

i=0

while ((i<=12)) ; do
echo $i
(C i+=1))

done

cat list | while read f ; do
Assume list contains one filename per line
stat "$£"

done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

29/57

for Loop

for name [in list]; do cmds ; done
@ Executes cmds for each memberin 1ist
@ "$@" used if 1ist isn’t there

$ for i in a b c ; do
> echo $i

> done

a

b

c

for id in $(cat userlist) ; do
assumes no spaces in userIDs
echo "Mailing $id..."
mail -s "Good subject" "$id"@someschool.edu < msg
done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

30/57

Reading Files in Directory

Use read to Preserve Spaces

@ You must be aware of filenames with spaces
@ Consider the different approaches:

$ 1s -1

’a space’

nospace

$ for f in $(1s -1) ; do
> echo $f

> done

a

space

nospace

$ 1s -1 | while read f ; do
> echo $f

> done

a space

nospace

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024 31/57

Counting for Loop

@ Bash has a C-like for loop:

$ for ((i=0; i<3; ++i)) ; do
> echo $i
> done

0
1
2

$ for ((i=12; i>0; i-=4)) ; do
> echo $i

> done

12

8

4

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

32/57

{x. .y} — Brace Expansion

{x..y[..incl}
@ Generates sequences in a natural way

$ echo {5..13}
56789 10 11 12 13

$ echo {a..g}
abcdefg
$

@ Brace expansion will pad numbers on the left’

$ for i in {000..010..2} ; do echo -n "$i " ; done
000 002 004 006 008 010

@ This is quite handy in loops:

for i in {00..05} ; do
\rm proc${i}.log
done

"YMMYV, depending on your platform
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

33/57

Loops — continue, break

@ break exits a loop

@ continue shortcircuits the loop, resumes at the next iteration of

the loop

for i in {1..42} ; do
(C i%2 == 0)) && continue
(C i%9 == 0)) && break
echo $i

done

$
>
>
>
>
1
3
5
7
$

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

34/57

case

case word in {pattern) cmds ;;} esac

@ Selectively execute cmds if word matches the corresponding
pattern (glob)

@ Commands are separated by ;
@ Cases are separated by ; ;

case $opt in
n) DRY_RUN=1 ;;
x) ECHO=1 ;;
\? | h | H) usage() ; exit 1 ;;
?) echo "Unkown character ;;
esac

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 35/57

select

select name [in 1list]; do cmds ; done
@ Much like the for loop

@ Displays enumerated menu of 1ist

@ Puts user’s choice in name

$ select resp in "This" "That" "Quit" ; do
> echo "You chose $resp"

> ["$resp" == Quit] && {echo ’bye!’ ; break ; }
> done

1) This

2) That

3) Quit

#7 2

You chose That

#7 3

You chose Quit

bye!

$

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

36/57

Organised Evolution

Do not write the whole thing at once!

Guys, don’t write the entire script, any program, then try to compile or
run.
Break it into smaller, logical pieces, and build upwards:

@ Get the loop/input correct, e.g., selecting only files of interest
@ Separately, get the processing for a single file correct
@ Now, put those pieces together

Interactive interpreters help you, here, because you can test a line or a
loop interactively as you're writing your script.

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 38/57

More Bash Parameters

These should be familiar:

$$ The process ID (pid) of the shell
$7 The exit status of the last command

These are handy inside scripts and functions

$# The number of arguments
$* All arguments
$@ All arguments (individually quoted)

${n} The n!" positional argument

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

39/57

Arguments to Scripts

@ If the script has a proper sha-bang, and the execution bit is set,
the script may be invoked directly

@ Arguments may be supplied, as with any other commad
myScript argl arg2 ...
@ Or, bash may be invoked explicitly, and given a script as input
@ Arguments to the script would follow the script
bash myScript argl arg2 ...

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 40/57

Arguments to Scripts

@ Bash, in turn, can take options
@ There are two helpful ones for writing and debugging scripts
-n Dry run. File is parsed, but commands aren’t
executed. Check syntax
-x Echo on. Commands are echoed to stderr as
they’re executed (after parameter, file, etc. ex-
pansion has happened)

$ bash -x ./hello

+ echo ’Hello World’

Hello World

+ echo ’My name is kschmidt’
My name is kschmidt

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 41/57

Arguments in Scripts

@ Arguments are positional
@ $0 is the name of the command (how it was invoked)

@ In Bourne, $1 — $9
e Can't access $10, it'd be $1 followed by 0

@ In Bash, we can wrap parameters in curly braces, so, ${1}, ${123},
etc.

(See Labs/Bash/args.bash)

echo "Here is how the script was invoked: $0"
echo "Here are the arguments: $*"

echo "This is the number of arguments: $#"
echo "We’ll show each arg:"

for a in "$@" ; do echo "$a" ; done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 42/57

Processing Args — shift

shift [cnt]
@ Shifts args to the left cnt (default 1) positions
@ $1is gone, $2 — $1, etc.

i=0

while [! -z "$1"] ; do
(C i+=1)) # just here to enumerate output
echo -e "$i\t$1"
shift # old $1 is gone

done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

43/57

Processing Args — getopts

getopts optstring name
@ Bash built-in
Just handles short (single character) options’

°
@ Returns SUCCESS when it finds an option
@ optstring is the list of options

e Options that take an arg are followed by a colon (:)

name holds the current option
Index of current arg stored in $0PTIND
If option takes an arg, it is stored in $0PTARG

'See getopt utility
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 44/57

getopts — e.g.

while getopts "ab:cC" opt; do
case $opt in
a) echo "option a, at index $0PTIND";;
b) echo "option b with arg = $0PTARG, at index $OPTIND";;
c | C) echo "option $opt, at index $OPTIND";;
?) echo "usage: $0 [-a] [b arg] [-c] args..." ; exit 1;;
esac
done

echo "\$OPTIND = $OPTIND"
shift $(($0PTIND -1)) # shift off the options

echo -e "\nHere are the remaining arguments:"
for i in "$@" ; do

echo -e "\t$i"
done

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 45/57

Bash Functions

function name {body} '
name () {body}

@ Executed in the same environment

@ Arguments to function are handled the same as arguments to a
script?

@ Can be called recursively (see $FUNCNEST)

@ Built-in return »v can be used in a function, to return execution
(and optional status rv) to caller

@ Otherwise, status of last command is used
@ Export to make available to subshells:

export -f funcname

'In fact, the curly braces and body can be any compound command
2Except that $0 is unchanged. See $FUNCNAME
Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 47/57

Functions — Parameters

@ Accessed just as in a script
o 31, %2, ...

@ $0 is the caller’s $0
@ See $FUNCNAME

@ $#, $*, $@ behave the same
@ shift works the same

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 48/57

Functions — e.g.

function hello
{
echo "hello $1"
if [[-n "$2" && "$2" -gt 1 1] ; then
hello $1 $(($2-1))
fi
¥

@ Called as a script would be:

$ hello Vera 3
hello Vera
hello Vera
hello Vera

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

49/57

Local Variables in Functions

local {var}
@ Defines variable(s) local to function
@ Won't step on caller’s environment

function hello {
local USER=’Elmer Fudd’
FO00="Hunting Wabbit’
echo "Hello, $USER, you are $F00"
¥

$ FO0=’Baking Cookies’

$ echo $USER

kschmidt

$ hello

Hello, Elmer Fudd, you are Hunting Wabbit
$ echo $FO00

Hunting Wabbit

$ echo $USER

kschmidt

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

50/57

Parameter Expansion

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 51/57

Unset or Null Parameters

Expansions for unset (or null) parameters:

${param:-word} Use word if param is not set or is
null

${param:=word} Use word if param is not set or is
null, set it to word

${param:?word} If param is not set or is null, print
word t0 stderr, exit shell (if not in-
teractive)

${param:+word} If param is set, use word , other-
wise use null

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024 52/57

E.g. — Null Parameters

$ unset foo

$ echo ${foo:-"Hello!"}
Hello!

$ echo $foo

$ echo ${foo:?"Houston, we have a problem"}
bash: foo: Houston, we have a problem
$ echo ${foo:+"We here?"}

echo ${foo:=’I am de Fault’}

am de Fault

echo $foo

am de Fault

echo ${foo:?"Houston, we have a problem"}
am de Fault

echo ${foo:+"We here?"}

We here?

B HH HH H P

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

53/57

Removing Patterns

Remove leading or trailing Patterns (globs)

${param#tpattern} Remove shortest leading pattern
${param#tttpattern} Remove longest leading pattern
${param¥pattern} Remove shortest trailing pattern
${paramlipattern} Remove longest trailing pattern

$ f=a"b"c
$ echo ${f#x"}
b~c

$ echo ${f##x*"}
c

$ echo ${f%% " *}

a
$ echo ${f% " *}
a”"b

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

54/57

Parameters — Pattern Substitution

${param/pattern/string}
@ Substitutes string for longest matching pattern
e Again, pattern is a glob, not a regular expression

@ If pattern starts with /, it substitutes all occurrences

$ f="The cat sat on the hat"
$ echo ${f/[hcslat/XXX}

The XXX sat on the hat

$ echo ${f//[hcs]lat/XXX}
The XXX XXX on the XXX

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

55/57

Parameters — Substrings

${param:offset}
${param:offset:length}

@ Extract substring starting at index offset
@ Extract length (all remaining) characters

$ n=’Kurt Schmidt’
$ echo ${n:3}

t Schmidt

$ echo ${n:5:3}
Sch

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash October 10, 2024

56/57

Parameters — Change Case

${param<OP>pattern}

@ Change case of characters matched by pattern

@ pattern should not attempt to match a larger string

@ If pattern is missing, treated as a 7

@ - ~~ —Convert first (each) matched character to upper
@ , ,, — Convert first (each) matched character to lower

$ £=SHOUT

$ echo ${f,}
sHOUT

$ echo ${f,.,}
shout

$ echo ${f,[SOT]}
sHOUT

$ echo ${f,,[SOT]}
sHoUt

$ f=quiet

$ echo ${f""}
QUIET

Kurt Schmidt (Skipjack Solutions) Shell Scripting with Bash

October 10, 2024

57/57

	Intro
	Hello, Script!
	Conditionals
	test – []
	[[]] Built-in
	let – Arithmetic

	Control Flow
	if-elif-else
	Loops

	Scripts, Arguments
	Functions
	Parameter Expansion

